Theory of high-temperature multiferroicity in cupric oxide

Phys Rev Lett. 2011 Jun 24;106(25):257601. doi: 10.1103/PhysRevLett.106.257601. Epub 2011 Jun 20.

Abstract

The incommensurate-commensurate phases reported in cupric oxide below 230 K are shown theoretically to realize an inverted sequence of symmetry-breaking mechanisms with respect to the usual sequence occurring in low-temperature multiferroic compounds. The sequence inversion results from a strong triggering-coupling mechanism between two antiferromagnetic order parameters inducing a first-order transition to the multiferroic phase. Such mechanism is favored by the large antiferromagnetic superexchange interactions, responsible of the high-T(N) temperature, and implies a preeminence of these interactions on the magnetocrystalline anisotropy. The magnetic structures of the equilibrium phases and the microscopic interactions giving rise to the polarization are determined.