A Workflow for Global Sensitivity Analysis of PBPK Models
- PMID: 21772819
- PMCID: PMC3128931
- DOI: 10.3389/fphar.2011.00031
A Workflow for Global Sensitivity Analysis of PBPK Models
Abstract
Physiologically based pharmacokinetic (PBPK) models have a potentially significant role in the development of a reliable predictive toxicity testing strategy. The structure of PBPK models are ideal frameworks into which disparate in vitro and in vivo data can be integrated and utilized to translate information generated, using alternative to animal measures of toxicity and human biological monitoring data, into plausible corresponding exposures. However, these models invariably include the description of well known non-linear biological processes such as, enzyme saturation and interactions between parameters such as, organ mass and body mass. Therefore, an appropriate sensitivity analysis (SA) technique is required which can quantify the influences associated with individual parameters, interactions between parameters and any non-linear processes. In this report we have defined the elements of a workflow for SA of PBPK models that is computationally feasible, accounts for interactions between parameters, and can be displayed in the form of a bar chart and cumulative sum line (Lowry plot), which we believe is intuitive and appropriate for toxicologists, risk assessors, and regulators.
Keywords: Lowry plot; PBPK; alternatives; global sensitivity analysis.
Figures
Similar articles
-
Use of in vitro data in developing a physiologically based pharmacokinetic model: Carbaryl as a case study.Toxicology. 2015 Jun 5;332:52-66. doi: 10.1016/j.tox.2014.05.006. Epub 2014 May 24. Toxicology. 2015. PMID: 24863738
-
Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles.Clin Pharmacokinet. 2008;47(4):245-59. doi: 10.2165/00003088-200847040-00003. Clin Pharmacokinet. 2008. PMID: 18336054
-
Constraint-based perturbation analysis with cluster Newton method: a case study of personalized parameter estimations with irinotecan whole-body physiologically based pharmacokinetic model.BMC Syst Biol. 2017 Dec 21;11(Suppl 7):129. doi: 10.1186/s12918-017-0513-2. BMC Syst Biol. 2017. PMID: 29322928 Free PMC article.
-
Toxicokinetic modeling and its applications in chemical risk assessment.Toxicol Lett. 2003 Feb 18;138(1-2):9-27. doi: 10.1016/s0378-4274(02)00375-2. Toxicol Lett. 2003. PMID: 12559690 Review.
-
Predictive Pediatric Modeling and Simulation Using Ontogeny Information.J Clin Pharmacol. 2019 Sep;59 Suppl 1:S95-S103. doi: 10.1002/jcph.1497. J Clin Pharmacol. 2019. PMID: 31502689 Review.
Cited by
-
Animal-free assessment of developmental toxicity: Combining PBPK modeling with the ReproTracker assay.Toxicology. 2023 Dec;500:153684. doi: 10.1016/j.tox.2023.153684. Epub 2023 Nov 27. Toxicology. 2023. PMID: 38029956
-
The Application of a Physiologically Based Toxicokinetic Model in Health Risk Assessment.Toxics. 2023 Oct 21;11(10):874. doi: 10.3390/toxics11100874. Toxics. 2023. PMID: 37888724 Free PMC article. Review.
-
Application of physiologically based pharmacokinetic modeling to understand real-world outcomes in patients receiving imatinib for chronic myeloid leukemia.Pharmacol Res Perspect. 2023 Aug;11(4):e01082. doi: 10.1002/prp2.1082. Pharmacol Res Perspect. 2023. PMID: 37417254 Free PMC article.
-
Development, testing, parameterisation, and calibration of a human PBK model for the plasticiser, di (2-ethylhexyl) adipate (DEHA) using in silico, in vitro and human biomonitoring data.Front Pharmacol. 2023 Mar 23;14:1165770. doi: 10.3389/fphar.2023.1165770. eCollection 2023. Front Pharmacol. 2023. PMID: 37033641 Free PMC article.
-
Development, testing, parameterisation, and calibration of a human PBPK model for the plasticiser, di-(2-ethylhexyl) terephthalate (DEHTP) using in silico, in vitro and human biomonitoring data.Front Pharmacol. 2023 Feb 20;14:1140852. doi: 10.3389/fphar.2023.1140852. eCollection 2023. Front Pharmacol. 2023. PMID: 36891271 Free PMC article.
References
-
- Barter Z. E., Bayliss M. K., Beaune P. H., Boobis A. R., Carlile D. J., Edwards R. J., Houston J. B., Lake B. G., Lipscomb J. C., Pelkonen O. R., Tucker G. T., Rostami-Hodjegan A. (2007). Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr. Drug Metab. 8, 33–4510.2174/138920007779315053 - DOI - PubMed
-
- Barton H. A., Andersen M. E., Clewell H. J., III. (1998). Harmonisation: developing consistent guidelines for applying mode of action and dosimetry information to cancer and noncancer risk assessment. Hum. Ecol. Risk Assess. 4, 74–11510.1080/10807039891284226 - DOI
-
- Barton H. A., Bessems J., Bouvier d’Yvoire M., Buist H., Clewell H., III, Gundert-Remy U., Krishnan K., Lipscomb J., Loizou G., Meek B., Moir D., Spendiff M. (2009). “Principles of characterizing and applying physiologically-based pharmacokinetic and toxicokinetic models in risk assessment,” in IPCS Project on the Harmonization of Approaches to the Assessment of Risk from Exposure to Chemicals (Geneva: World Health Organization).
LinkOut - more resources
Full Text Sources
