Neogenin may functionally substitute for Dcc in chicken

PLoS One. 2011;6(7):e22072. doi: 10.1371/journal.pone.0022072. Epub 2011 Jul 11.

Abstract

Dcc is the key receptor that mediates attractive responses of axonal growth cones to netrins, a family of axon guidance cues used throughout evolution. However, a Dcc homolog has not yet been identified in the chicken genome, raising the possibility that Dcc is not present in avians. Here we show that the closely related family member neogenin may functionally substitute for Dcc in the developing chicken spinal cord. The expression pattern of chicken neogenin in the developing spinal cord is a composite of the distribution patterns of both rodent Dcc and neogenin. Moreover, whereas the loss of mouse neogenin has no effect on the trajectory of commissural axons, removing chicken neogenin by RNA interference results in a phenotype similar to the functional inactivation of Dcc in mouse. Taken together, these data suggest that the chick neogenin is functionally equivalent to rodent Dcc.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chickens
  • DCC Receptor
  • Gene Expression Regulation, Developmental
  • Membrane Proteins / chemistry*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Mice
  • RNA Interference
  • Receptors, Cell Surface / chemistry*
  • Receptors, Cell Surface / genetics
  • Receptors, Cell Surface / metabolism*
  • Spinal Cord / embryology
  • Spinal Cord / metabolism
  • Tumor Suppressor Proteins / chemistry*
  • Tumor Suppressor Proteins / genetics
  • Tumor Suppressor Proteins / metabolism*

Substances

  • DCC Receptor
  • Dcc protein, mouse
  • Membrane Proteins
  • Receptors, Cell Surface
  • Tumor Suppressor Proteins
  • neogenin