Ultrafast nonradiative decay of electronically excited States of malachite green: ab initio calculations

J Phys Chem A. 2011 Aug 18;115(32):8808-15. doi: 10.1021/jp203415m. Epub 2011 Jul 25.

Abstract

We have investigated the nonradiative deactivation process of malachite green in the singlet excited states, S(1) and S(2), by high-level ab initio quantum chemical calculations using the CASPT2//CASCF approach. The deactivation pathways connecting the Franck-Condon region and conical intersection regions are identified. The initial population in the S(1) state is on a flat surface and the relaxation involves a rotation of phenyl rings, which leads the molecule to reach the conical intersection between the S(1) and S(0) states, where it efficiently decays back to the ground state. There exists a small barrier connecting the Franck-Condon and conical intersection regions on the S(1) potential energy surface. The decay mechanism from the S(2) state also involves the twisting motion of phenyl rings. In contrast to the excitation to the S(1) state, the initial population is on a downhill ramp potential and the barrierless relaxation through the rotation of substituted phenyl rings is expected. During the course of relaxation, the molecule switches to the S(1) state at the conical intersection between S(2) and S(1), and then it decays back to the ground state through the intersection between S(1) and S(0). In relaxation from both S(1) and S(2), large distortion of phenyl rings is required for the ultrafast nonradiative decay to the ground state.