Graphite patterning in a controlled gas environment

Nanotechnology. 2011 Aug 19;22(33):335304. doi: 10.1088/0957-4484/22/33/335304. Epub 2011 Jul 26.

Abstract

Although a number of methods using scanning probe lithography to pattern graphene have already been introduced, the fabrication of real devices still faces limitations. We report graphite patterning using scanning probe lithography with control of the gas environment. Patterning processes using scanning probe lithography of graphite or graphene are normally performed in air because water molecules forming the meniscus between the tip and the sample mediate the etching reaction. This water meniscus, however, may prevent uniform patterning due to its strong surface tension or large contact angle on surfaces. To investigate this side effect of water, our experiment was performed in a chamber where the gas environment was controlled with methyl alcohol, oxygen or isopropanol gases. We found that methyl alcohol facilitates graphite etching, and a line width as narrow as 3 nm was achieved as methyl alcohol also contains an oxygen atom which gives rise to the required oxidation. Due to its low surface tension and highly adsorptive behavior, methyl alcohol has advantages for a narrow line width and high speed etching conditions.

Publication types

  • Research Support, Non-U.S. Gov't