Neocortical excitation/inhibition balance in information processing and social dysfunction

Nature. 2011 Jul 27;477(7363):171-8. doi: 10.1038/nature10360.

Abstract

Severe behavioural deficits in psychiatric diseases such as autism and schizophrenia have been hypothesized to arise from elevations in the cellular balance of excitation and inhibition (E/I balance) within neural microcircuitry. This hypothesis could unify diverse streams of pathophysiological and genetic evidence, but has not been susceptible to direct testing. Here we design and use several novel optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology. Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30-80 Hz range, which have both been observed in clinical conditions in humans. Consistent with the E/I balance hypothesis, compensatory elevation of inhibitory cell excitability partially rescued social deficits caused by E/I balance elevation. These results provide support for the elevated cellular E/I balance hypothesis of severe neuropsychiatric disease-related symptoms.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Autistic Disorder / physiopathology
  • Disease Models, Animal
  • HEK293 Cells
  • Hippocampus / cytology
  • Humans
  • Learning
  • Mental Disorders / physiopathology
  • Mice
  • Models, Neurological*
  • Motor Activity
  • Neural Inhibition / physiology*
  • Neurons / metabolism*
  • Opsins / metabolism
  • Prefrontal Cortex / physiology*
  • Prefrontal Cortex / physiopathology*
  • Schizophrenia / physiopathology
  • Social Behavior*

Substances

  • Opsins