Nuclear factor of activated T cells (NFAT) is a family of transcription factors composed of five proteins. Among them, NFAT1 is a predominant NFAT protein in CD4(+) T cells. NFAT1 positively regulates transcription of a large number of inducible cytokine genes including IL-2, IL-4, IL-5 and other cytokines. However, disruption of NFAT1 results in an unexpected increase of IL-4. In this study, we have investigated the role of NFAT1 in regulation of IL-4 gene expression in T helper 2 cells (Th2) from an epigenetic viewpoint. NFAT1 deficient Th2 cells showed a sustained IL-4 expression while wild type (WT) cells reduced its expression. We tested whether epigenetic maintenance and changes in the chromatin architecture of IL-4 promoter locus play a role in differential IL-4 transcription between in WT and NFAT1 deficient Th2 cells. Compared with WT, NFAT1 deficient CD4(+) Th2 cells exhibited enhanced chromatin accessibility with permissive histone modification and DNA demethylation in the IL-4 promoter region. Transcription factors bound to IL-4 promoter region in the absence of NFAT1 were identified by Micro-LC/LC-MS/MS analysis. Among the candidates, preferential recruitment of JUNB to the IL-4 promoter was confirmed by chromatin immunoprecipitation analysis. Overexpression of JUNB together with SATB1 synergistically upregulated IL-4 promoter activity, while knockdown JUNB significantly reduced IL-4 expression. Our results suggest that the prolonged IL-4 expression in NFAT1 deficient Th2 cells is mediated by preferential binding of JUNB/SATB1 to the IL-4 promoter with permissive chromatin architecture.