Spatiotemporally regulated protein kinase A activity is a critical regulator of growth factor-stimulated extracellular signal-regulated kinase signaling in PC12 cells
- PMID: 21807900
- PMCID: PMC3187359
- DOI: 10.1128/MCB.05459-11
Spatiotemporally regulated protein kinase A activity is a critical regulator of growth factor-stimulated extracellular signal-regulated kinase signaling in PC12 cells
Abstract
PC12 cells exhibit precise temporal control of growth factor signaling in which stimulation with epidermal growth factor (EGF) leads to transient extracellular signal-regulated kinase (ERK) activity and cell proliferation, whereas nerve growth factor (NGF) stimulation leads to sustained ERK activity and differentiation. While cyclic AMP (cAMP)-mediated signaling has been shown to be important in conferring the sustained ERK activity achieved by NGF, little is known about the regulation of cAMP and cAMP-dependent protein kinase (PKA) in these cells. Using fluorescence resonance energy transfer (FRET)-based biosensors localized to discrete subcellular locations, we showed that both NGF and EGF potently activate PKA at the plasma membrane, although they generate temporally distinct activity patterns. We further show that both stimuli fail to induce cytosolic PKA activity and identify phosphodiesterase 3 (PDE3) as a critical regulator in maintaining this spatial compartmentalization. Importantly, inhibition of PDE3, and thus perturbation of the spatiotemporal regulation of PKA activity, dramatically increases the duration of EGF-stimulated nuclear ERK activity in a PKA-dependent manner. Together, these findings identify EGF and NGF as potent activators of PKA activity specifically at the plasma membrane and reveal a novel regulatory mechanism contributing to the growth factor signaling specificity achieved by NGF and EGF in PC12 cells.
Figures
Similar articles
-
Nerve growth factor- and epidermal growth factor-regulated gene transcription in PC12 pheochromocytoma and INS-1 insulinoma cells.Eur J Cell Biol. 2000 Dec;79(12):924-35. doi: 10.1078/0171-9335-00126. Eur J Cell Biol. 2000. PMID: 11152283
-
PKA phosphorylation of Src mediates Rap1 activation in NGF and cAMP signaling in PC12 cells.J Cell Sci. 2004 Dec 1;117(Pt 25):6085-94. doi: 10.1242/jcs.01527. Epub 2004 Nov 16. J Cell Sci. 2004. PMID: 15546918
-
Nerve growth factor, but not epidermal growth factor, increases Fra-2 expression and alters Fra-2/JunD binding to AP-1 and CREB binding elements in pheochromocytoma (PC12) cells.J Neurosci. 2001 Jan 1;21(1):18-26. doi: 10.1523/JNEUROSCI.21-01-00018.2001. J Neurosci. 2001. PMID: 11150315 Free PMC article.
-
Regulation of PC12 cell differentiation by cAMP signaling to ERK independent of PKA: do all the connections add up?Sci STKE. 2007 Apr 17;2007(382):pe15. doi: 10.1126/stke.3822007pe15. Sci STKE. 2007. PMID: 17440132 Free PMC article. Review.
-
Signaling pathways for PC12 cell differentiation: making the right connections.Science. 2002 May 31;296(5573):1648-9. doi: 10.1126/science.1071552. Science. 2002. PMID: 12040181 Review.
Cited by
-
How cells process information: quantification of spatiotemporal signaling dynamics.Protein Sci. 2012 Jul;21(7):918-28. doi: 10.1002/pro.2089. Epub 2012 Jun 5. Protein Sci. 2012. PMID: 22573643 Free PMC article. Review.
-
Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks.Chem Rev. 2018 Dec 26;118(24):11707-11794. doi: 10.1021/acs.chemrev.8b00333. Epub 2018 Dec 14. Chem Rev. 2018. PMID: 30550275 Free PMC article. Review.
-
Signalling, trafficking and glucoregulatory properties of glucagon-like peptide-1 receptor agonists exendin-4 and lixisenatide.Br J Pharmacol. 2020 Sep;177(17):3905-3923. doi: 10.1111/bph.15134. Epub 2020 Jun 19. Br J Pharmacol. 2020. PMID: 32436216 Free PMC article.
-
GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival.Mol Biol Cell. 2015 Dec 1;26(24):4412-26. doi: 10.1091/mbc.E15-02-0087. Epub 2015 Oct 7. Mol Biol Cell. 2015. PMID: 26446845 Free PMC article.
-
Constitutive activation of PKA catalytic subunit in adrenal Cushing's syndrome.N Engl J Med. 2014 Mar 13;370(11):1019-28. doi: 10.1056/NEJMoa1310359. Epub 2014 Feb 26. N Engl J Med. 2014. PMID: 24571724 Free PMC article.
References
-
- Baillie G. S. 2009. Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J. 276:1790–1799 doi:10.1111/j.1742-4658.2009.06926.x - DOI - PubMed
-
- Bender A. T., Beavo J. A. 2006. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev. 58:488–520 doi:10.1124/pr.58.3.5 - DOI - PubMed
-
- Depry C., Allen M. D., Zhang J. 2011. Visualization of PKA activity in plasma membrane microdomains. Mol. Biosyst. 7:52–58 doi:10.1039/c0mb00079e - DOI - PubMed
-
- Dumaz N., Marais R. 2005. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J. 272:3491–3504 doi:10.1111/j.1742-4658.2005.04763.x - DOI - PubMed
-
- Grewal S. S., York R. D., Stork P. J. 1999. Extracellular-signal-regulated kinase signalling in neurons. Curr. Opin. Neurobiol. 9:544–553 doi:10.1016/S0959-4388(99)00010-0 - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous