Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 212 (2), 377-87

Stoichiometric Analysis of the Flagellar Hook-(Basal-Body) Complex of Salmonella Typhimurium


Stoichiometric Analysis of the Flagellar Hook-(Basal-Body) Complex of Salmonella Typhimurium

C J Jones et al. J Mol Biol.

Erratum in

  • J Mol Biol 1990 Sep 20;215(2):331


The stoichiometries of components within the flagellar hook-(basal-body) complex of Salmonella typhimurium have been determined. The hook protein (FlgE), the most abundant protein in the complex, is present at approximately 130 subunits. Hook-associated protein 1 (FlgK) is present at approximately 12 subunits. The distal rod protein (FlgG) is present at approximately 26 subunits, while the proximal rod proteins (FlgB, FlgC and FlgF) are present at only approximately six subunits each. The stoichiometries of the proximal rod proteins and hook-associated protein 1 are, within experimental error, consistent with values of 5 or 6, and 11, respectively. Such values would correspond to either one or two turns of a helical structure with a basic helix of approximately 5.5 subunits per turn, which is the geometry of both the hook and the filament and, one supposes, the rod and hook-associated proteins. These stoichiometries may derive from rules for the heterologous interactions that occur when a helical structure consists of successive segments constructed from different proteins; the stoichiometries within the hook and the distal portion of the rod must, however, be set by different mechanisms. The stoichiometries for the ring proteins are approximately 26 subunits each for the M-ring protein (FliF), the P-ring protein (FlgI), and the L-ring protein (FlgH); the protein responsible for the S-ring feature is not known. The rings presumably have rotational rather than helical symmetry, in which case the stoichiometries would be directly constrained by the intersubunit bonding angle. The ring stoichiometries are discussed in light of other information concerning flagellar structure and function.

Similar articles

See all similar articles

Cited by 80 PubMed Central articles

See all "Cited by" articles

Publication types

LinkOut - more resources