Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;6(7):e22814.
doi: 10.1371/journal.pone.0022814. Epub 2011 Jul 26.

Postnatal development of numbers and mean sizes of pancreatic islets and beta-cells in healthy mice and GIPR(dn) transgenic diabetic mice

Affiliations

Postnatal development of numbers and mean sizes of pancreatic islets and beta-cells in healthy mice and GIPR(dn) transgenic diabetic mice

Nadja Herbach et al. PLoS One. 2011.

Abstract

The aim of this study was to examine postnatal islet and beta-cell expansion in healthy female control mice and its disturbances in diabetic GIPR(dn) transgenic mice, which exhibit an early reduction of beta-cell mass. Pancreata of female control and GIPR(dn) transgenic mice, aged 10, 45, 90 and 180 days were examined, using state-of-the-art quantitative-stereological methods. Total islet and beta-cell volumes, as well as their absolute numbers increased significantly until 90 days in control mice, and remained stable thereafter. The mean islet volumes of controls also increased slightly but significantly between 10 and 45 days of age, and then remained stable until 180 days. The total volume of isolated beta-cells, an indicator of islet neogenesis, and the number of proliferating (BrdU-positive) islet cells were highest in 10-day-old controls and declined significantly between 10 and 45 days. In GIPR(dn) transgenic mice, the numbers of islets and beta-cells were significantly reduced from 10 days of age onwards vs. controls, and no postnatal expansion of total islet and beta-cell volumes occurred due to a reduction in islet neogenesis whereas early islet-cell proliferation and apoptosis were unchanged as compared to control mice. Insulin secretion in response to pharmacological doses of GIP was preserved in GIPR(dn) transgenic mice, and serum insulin to pancreatic insulin content in response to GLP-1 and arginine was significantly higher in GIPR(dn) transgenic mice vs. controls. We could show that the increase in islet number is mainly responsible for expansion of islet and beta-cell mass in healthy control mice. GIPR(dn) transgenic mice show a disturbed expansion of the endocrine pancreas, due to perturbed islet neogenesis.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Representative islet profiles, sampling of sections, counting Q islets.
Example of an islet profile of a control (A) and a GIPRdn transgenic mouse (B) immunohistochemically stained for insulin; (C) Sampling scheme for drawing primary and reference sections; (D) Primary section and (E) reference section for counting Q islets, one Q may be counted in the example (arrow in E).
Figure 2
Figure 2. Quantitative-stereological investigations of the endocrine pancreas.
(A) Total islet volume (V(Islets,Pan), (B) total beta-cell volume (V(B-cells,Islets), (C) Number of islets (N(Islets, Pan), (D) mean islet volume (v(islets), (E) beta-cell number (N(B-cells,Islets), (F) mean beta-cell volume (v(B-cells). Open bars: female control mice; filled bars: female GIPRdn transgenic mice; Data represent means and SEM. * p<0.05 vs. age-matched control; +p<0.05 vs. previous time point.
Figure 3
Figure 3. Islet-cell replication, isolated beta-cells, and islet-cell apoptosis.
(A) number of BrdU positive islet cells per 105 cells (N(BrdU)), (B) total volume of isolated beta-cells (V(Neo,Pan), (C) number of apoptotic islet cells per 105 cells (N(Apoptosis)). Open bars: female control mice; filled bars: female GIPRdn transgenic mice; Data represent means and SEM. * p<0.05 vs. age-matched control; +p<0.05 vs. previous time point.
Figure 4
Figure 4. In vivo investigations.
(A) Randomly fed (10 days) and fasting blood glucose (45-180 days), and (B) randomly fed (10 days) and postprandial serum insulin levels (45–90 days), (C) insulin tolerance test, (D), and area under glucose curve (AUC) during insulin tolerance test shown in C; co, control; tg, GIPRdn transgenic; Data represent means and SEM, * p<0.05 vs. age-matched control.
Figure 5
Figure 5. In vivo insulin secretion studies at 10 days of age.
(A) Blood glucose, (B) serum insulin levels, (C) increase of serum insulin levels from basal levels (fold insulin secretion), (D) serum insulin to pancreatic insulin ratio; Open bars: control mice; filled bars: GIPRdn transgenic mice; Data represent means and SEM. * p<0.05 vs. age-matched control; + p<0.05 vs. basal values.

Similar articles

Cited by

References

    1. Bonner-Weir S, Sharma A. Are there pancreatic progenitor cells from which new islets form after birth? Nat Clin Pract Endocrinol Metab. 2006;2:240–241. - PubMed
    1. Bouwens L, Rooman I. Regulation of pancreatic beta-cell mass. Physiological Reviews. 2005;85:1255–1270. - PubMed
    1. Skau M, Pakkenberg B, Buschard K, Bock T. Linear correlation between the total islet mass and the volume-weighted mean islet volume. Diabetes. 2001;50:1763–1770. - PubMed
    1. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429:41–46. - PubMed
    1. Jo J, Choi MY, Koh DS. Size distribution of mouse Langerhans islets. Biophysical Journal. 2007;93:2655–2666. - PMC - PubMed

MeSH terms

LinkOut - more resources