Optogenetic control of cells and circuits
- PMID: 21819234
- PMCID: PMC3759011
- DOI: 10.1146/annurev-cellbio-100109-104051
Optogenetic control of cells and circuits
Abstract
The absorption of light by bound or diffusible chromophores causes conformational rearrangements in natural and artificial photoreceptor proteins. These rearrangements are coupled to the opening or closing of ion transport pathways, the association or dissociation of binding partners, the enhancement or suppression of catalytic activity, or the transcription or repression of genetic information. Illumination of cells, tissues, or organisms engineered genetically to express photoreceptor proteins can thus be used to perturb biochemical and electrical signaling with exquisite cellular and molecular specificity. First demonstrated in 2002, this principle of optogenetic control has had a profound impact on neuroscience, where it provides a direct and stringent means of probing the organization of neural circuits and of identifying the neural substrates of behavior. The impact of optogenetic control is also beginning to be felt in other areas of cell and organismal biology.
Figures
Similar articles
-
Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors.Photochem Photobiol. 2011 May-Jun;87(3):491-510. doi: 10.1111/j.1751-1097.2011.00913.x. Epub 2011 Mar 23. Photochem Photobiol. 2011. PMID: 21352235 Review.
-
Natural photoreceptors and their application to synthetic biology.Trends Biotechnol. 2015 Feb;33(2):80-91. doi: 10.1016/j.tibtech.2014.10.007. Epub 2014 Nov 12. Trends Biotechnol. 2015. PMID: 25466878 Review.
-
Algal photoreceptors: in vivo functions and potential applications.Planta. 2014 Jan;239(1):1-26. doi: 10.1007/s00425-013-1962-5. Epub 2013 Oct 1. Planta. 2014. PMID: 24081482 Review.
-
Biological photoreceptors of light-dependent regulatory processes.Biochemistry (Mosc). 2013 Nov;78(11):1238-53. doi: 10.1134/S0006297913110047. Biochemistry (Mosc). 2013. PMID: 24460938 Review.
-
Induction of Signal Transduction by Using Non-Channelrhodopsin-Type Optogenetic Tools.Chembiochem. 2018 Jun 18;19(12):1217-1231. doi: 10.1002/cbic.201700635. Epub 2018 May 28. Chembiochem. 2018. PMID: 29577530 Review.
Cited by
-
Engineered Axonal Tracts as "Living Electrodes" for Synaptic-Based Modulation of Neural Circuitry.Adv Funct Mater. 2018 Mar 21;28(12):1701183. doi: 10.1002/adfm.201701183. Epub 2017 Sep 4. Adv Funct Mater. 2018. PMID: 34045935 Free PMC article.
-
A calibrated optogenetic toolbox of stable zebrafish opsin lines.Elife. 2020 Mar 27;9:e54937. doi: 10.7554/eLife.54937. Elife. 2020. PMID: 32216873 Free PMC article.
-
Can Optogenetic Tools Determine the Importance of Temporal Codes to Sensory Information Processing in the Brain?Front Syst Neurosci. 2015 Dec 21;9:174. doi: 10.3389/fnsys.2015.00174. eCollection 2015. Front Syst Neurosci. 2015. PMID: 26733826 Free PMC article.
-
History and Perspectives of Ion-Transporting Rhodopsins.Adv Exp Med Biol. 2021;1293:3-19. doi: 10.1007/978-981-15-8763-4_1. Adv Exp Med Biol. 2021. PMID: 33398804 Review.
-
Lipid pools as photolabile "protecting groups": design of light-activatable bioagents.Angew Chem Int Ed Engl. 2013 Sep 16;52(38):9936-9. doi: 10.1002/anie.201305510. Epub 2013 Jul 31. Angew Chem Int Ed Engl. 2013. PMID: 23904389 Free PMC article.
References
-
- Adams SR, Tsien RY. Controlling cell chemistry with caged compounds. Annu Rev Physiol. 1993;55:755–84. - PubMed
-
- Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K. Temporally precise in vivo control of intracellular signalling. Nature. 2009;458:1025–29. - PubMed
-
- Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng. 2007;4:S143–56. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
