Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug;7(8):e1002202.
doi: 10.1371/journal.pgen.1002202. Epub 2011 Aug 4.

Hunger artists: yeast adapted to carbon limitation show trade-offs under carbon sufficiency

Affiliations

Hunger artists: yeast adapted to carbon limitation show trade-offs under carbon sufficiency

Jared W Wenger et al. PLoS Genet. 2011 Aug.

Abstract

As organisms adaptively evolve to a new environment, selection results in the improvement of certain traits, bringing about an increase in fitness. Trade-offs may result from this process if function in other traits is reduced in alternative environments either by the adaptive mutations themselves or by the accumulation of neutral mutations elsewhere in the genome. Though the cost of adaptation has long been a fundamental premise in evolutionary biology, the existence of and molecular basis for trade-offs in alternative environments are not well-established. Here, we show that yeast evolved under aerobic glucose limitation show surprisingly few trade-offs when cultured in other carbon-limited environments, under either aerobic or anaerobic conditions. However, while adaptive clones consistently outperform their common ancestor under carbon limiting conditions, in some cases they perform less well than their ancestor in aerobic, carbon-rich environments, indicating that trade-offs can appear when resources are non-limiting. To more deeply understand how adaptation to one condition affects performance in others, we determined steady-state transcript abundance of adaptive clones grown under diverse conditions and performed whole-genome sequencing to identify mutations that distinguish them from one another and from their common ancestor. We identified mutations in genes involved in glucose sensing, signaling, and transport, which, when considered in the context of the expression data, help explain their adaptation to carbon poor environments. However, different sets of mutations in each independently evolved clone indicate that multiple mutational paths lead to the adaptive phenotype. We conclude that yeasts that evolve high fitness under one resource-limiting condition also become more fit under other resource-limiting conditions, but may pay a fitness cost when those same resources are abundant.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Normalized Competition Coefficients for 3 Environments.
Data are competition coefficients calculated by competing each strain (evolved and ancestor CP1AB) against a common reference strain. Values are the average of three biological replicates, with values normalized such that ancestral CP1AB (“P”) equals 1 in each environment. Significant differences versus CP1AB within each environment were calculated using a 2-tailed t-test. “*” indicates p<0.05 and “**” p<0.01. Error bars represent the Standard Error of the Mean. See Table S1 for un-normalized, average competition coefficients.
Figure 2
Figure 2. Physiological Fold-Changes Overlaid on Fitness.
Representation of physiological data combined with fitness data for three environments A) aerobic glucose limitation, B) anaerobic glucose limitation, C) aerobic acetate limitation. Primary (left) y-axis is normalized competition coefficient (same normalization as Figure 1). Secondary (right) y-axis is fold change (evolved/ancestral) of steady state physiological data including A600 (optical density at 600 nm), cells mL−1, and biomass g 100 ml−1. See Table S3 for un-normalized values and statistical analysis.
Figure 3
Figure 3. 88 Genes that Show “Enhanced Pasteur Effect” from Ferea et al.
Average of two biological replicates of relative mRNA abundance (measured against a pooled reference of all samples) for all three environmental conditions of the 88 genes identified in Ferea et al. whose expression level in that experiment was >2 fold up or down-regulated relative to the ancestor. All data are normalized to the ancestor (evolved log2(sample/reference) – ancestral log2(sample/reference)). Gene tree has been removed for space considerations. Clustered raw data are available in Dataset S1.
Figure 4
Figure 4. Expression Changes Common to Evolved Clones.
Significance analysis was performed as a 2-class SAM between all evolved clone data and all ancestral data for the three conditions. Prior to clustering the data were normalized to the ancestor as for Figure 3. Data from represents a time course of a constitutive Ras2G19V allele induced by the GAL10 promoter. mRNA abundances at 0, 20, 40, and 60 min were measured on an Affymetrix platform and normalized for our purposes to 0 min (log2(20 min/0 min), etc.). Data from are relative mRNA abundances over a time course (0, 15, 30, 60 min) of rapamycin (rap) treatment normalized to 0 min (log2(15 min/0 min), etc.). Data from are relative mRNA abundance of rapamycin treated wild type cells versus wild type (log2(rapamycin/no treatment)). Each row represents a gene, and grey indicates missing data. Clustered raw data are available in Dataset S2.
Figure 5
Figure 5. Specific Growth Rate of Evolved Clones Is Decreased in Glucose-Rich Environment.
Maximum specific growth rates of evolved clones and ancestor CP1AB (“P”) were calculated by growing multiple independent colonies of each strain in batch culture in two different media (rich “YP” medium and minimal “Adams” medium) with 4% glucose. Values are the mean of 3 independent colonies (change in ln(OD) per hour during exponential growth), with error bars showing standard error of the mean. Significant differences versus CP1AB within each medium were calculated using a 2-tailed t-test. “*” indicates p<0.05 and “**” p<0.01.
Figure 6
Figure 6. Normalized Competition Coefficients for 2 Glucose-Rich Environments.
Data are competition coefficients calculated by competing each strain (evolved and ancestor CP1AB) against a common reference strain. Values are the average of three biological replicates, with values normalized such that ancestral CP1AB (“P”) equals 1 in each environment. Significant differences versus CP1AB within each environment were calculated using a 2-tailed t-test. “*” indicates p<0.05 and “**” p<0.01. Error bars represent the Standard Error of the Mean. See Table S8 for un-normalized, average competition coefficients. Aerobic Glucose-limited data are the same as in Figure 1 and were added for comparison.

Similar articles

Cited by

References

    1. Fisher RA. The Genetical Theory of Natural Selection. Oxford: Oxford University Press; 1930.
    1. Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, et al. Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature. 2010;467:587–590. - PubMed
    1. Elena S, Lenski R. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Reviews Genetics. 2003;4:457–469. - PubMed
    1. Goho S, Bell G. The ecology and genetics of fitness in Chlamydomonas. IX. The rate of accumulation of variation of fitness under selection. Evolution. 2000;54:416–424. - PubMed
    1. Zeyl C. Experimental evolution with yeast. FEMS Yeast Research. 2006;6:685–691. - PubMed

Publication types