Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 3;4 Suppl 1(Suppl 1):S9.
doi: 10.1186/1756-6614-4-S1-S9.

Molecules important for thyroid hormone synthesis and action - known facts and future perspectives

Affiliations

Molecules important for thyroid hormone synthesis and action - known facts and future perspectives

Klaudia Brix et al. Thyroid Res. .

Abstract

Thyroid hormones are of crucial importance for the functioning of nearly every organ. Remarkably, disturbances of thyroid hormone synthesis and function are among the most common endocrine disorders affecting approximately one third of the working German population. Over the last ten years our understanding of biosynthesis and functioning of these hormones has increased tremendously. This includes the identification of proteins involved in thyroid hormone biosynthesis like Thox2 and Dehal where mutations in these genes are responsible for certain degrees of hypothyroidism. One of the most important findings was the identification of a specific transporter for triiodothyronine (T3), the monocarboxylate transporter 8 (MCT8) responsible for directed transport of T3 into target cells and for export of thyroid hormones out of thyroid epithelial cells. Genetic disturbances of MCT8 in patients result in a biochemical constellation of high T3 levels in combination with low or normal TSH and thyroxine levels leading to a new syndrome of severe X-linked mental retardation. Importantly mice lacking MCT8 presented only with a mild phenotype, indicating that compensatory mechanisms exist in mice. Moreover, it has become clear that not only genomic actions of T3 exist. T3 is also capable to activate adhesion receptors and it signals via activation of PI3K and MAPK pathways. Most recently, thyroid hormone derivatives were identified, the thyronamines which are decarboxylated thyroid hormones initiating physiological actions like lowering body temperature and heart rate, thereby acting in opposite direction to the classical thyroid hormones. So far it is believed that thyronamines function via the activation of a G-protein coupled receptor, TAAR1. The objective of this review is to summarise the recent findings in thyroid hormone synthesis and action and to discuss their implications for diagnosis of thyroid disease and for treatment of patients.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Old and new concepts of thyroid hormone action. A: Old concept of thyroid hormone action. In former times it was assumed that thyroid hormones are able to pass the plasma membrane by passive transport. Once in the cytosol T4 is deiodinated to T3 which exerts genomic effects by binding to the thyroid hormone receptor (TR). After hetero-dimerization with other nuclear receptors like retinoic X receptor (RXR), transcriptional regulation is initiated resulting in activation or inactivation of target genes. B: New concepts of thyroid hormone action. Thyroid hormones enter a target cell via specific transporters, e.g. T3 uses the monocarboxylate transporter MCT8 while T4 entry is mediated by Lat2 or Oatp14. Moreover, T3 can interact with αvβ3 integrins to induce ERK1/2 signalling. Cytosolic T3 exerts genomic effects but can additionally also act by non-genomic means after TR binding and activation of down-stream PI-3 kinase. Likewise, the naturally occurring iodothyronine T2 is believed to stimulate metabolic rates via mitochondrial pathways, thereby bypassing genomic regulation. Besides thyroid hormones, derivatives like the thyronamines T1AM or T0AM, modulate the action of T3, e.g. counter-acting its effects in certain target cells. Thyronamines (TAMs) bind to and activate G-protein coupled receptors (GPCRs) of the trace amine associated receptor (TAAR) family. So far, it is only known that TAAR1 is activated by TAMs and signals via adenylylcyclase (AC) activation with subsequent rise of cAMP levels. However other GPCRs are likely targets for thyroid hormone derivatives.

Similar articles

Cited by

References

    1. Kohrle J. The deiodinase family: selenoenzymes regulating thyroid hormone availability and action. Cell Mol Life Sci. 2000;57:1853–1863. doi: 10.1007/PL00000667. - DOI - PMC - PubMed
    1. Obregon MJ. Thyroid hormone and adipocyte differentiation. Thyroid. 2008;18:185–195. doi: 10.1089/thy.2007.0254. - DOI - PubMed
    1. Gartner R. Thyroid diseases in pregnancy. Curr Opin Obstet Gynecol. 2009;21:501–507. doi: 10.1097/GCO.0b013e328332a836. - DOI - PubMed
    1. Gruters A, l'Allemand D, Beyer P, Eibs G, Helge H, Korth-Schutz S, Oberdisse U, Schwartz-Bickenbach D, Weber B. Screening of newborn infants for hypothyroidism in Berlin (West) 1978-1982. Monatsschr Kinderheilkd. 1983;131:100–105. - PubMed
    1. Bauer M, Goetz T, Glenn T, Whybrow PC. The thyroid-brain interaction in thyroid disorders and mood disorders. J Neuroendocrinol. 2008;20:1101–1114. doi: 10.1111/j.1365-2826.2008.01774.x. - DOI - PubMed

LinkOut - more resources