Fabrication of TiO2 nanotubes by atomic layer deposition and their photocatalytic and photoelectrochemical applications

Nanotechnology. 2011 Sep 7;22(36):365702. doi: 10.1088/0957-4484/22/36/365702. Epub 2011 Aug 11.

Abstract

The formation of TiO(2) nanotubes was conducted by atomic layer deposition (ALD) with tris-(8-hydroxyquinoline) gallium (GaQ(3)) nanowires as a template at different substrate temperatures, 50, 100, and 200 °C. TiO(2) nanotubes were formed only at 50 and 100 °C. Although a higher growth rate at 50 °C was observed, nanotubes with better uniformity, conformality, and less residual chloride were obtained at 100 °C because of a different formation mechanism. A photocatalysis test of TiO(2) nanotubes prepared by different cycle numbers at 100 °C was conducted. It showed that TiO(2) nanotubes prepared by 400 cycles of ALD and treated at 700 °C for 1 h to form anatase phase had the best photocatalytic performance. Compared with P-25, the nanotubes showed higher photocatalytic degradation of rhodamine B and water splitting efficiency.

Publication types

  • Research Support, Non-U.S. Gov't