Predicting hospital admissions at emergency department triage using routine administrative data

Acad Emerg Med. 2011 Aug;18(8):844-50. doi: 10.1111/j.1553-2712.2011.01125.x.

Abstract

Objectives: To be able to predict, at the time of triage, whether a need for hospital admission exists for emergency department (ED) patients may constitute useful information that could contribute to systemwide hospital changes designed to improve ED throughput. The objective of this study was to develop and validate a predictive model to assess whether a patient is likely to require inpatient admission at the time of ED triage, using routine hospital administrative data.

Methods: Data collected at the time of triage by nurses from patients who visited the ED in 2007 and 2008 were extracted from hospital administrative databases. Variables included were demographics (age, sex, and ethnic group), ED visit or hospital admission in the preceding 3 months, arrival mode, patient acuity category (PAC) of the ED visit, and coexisting chronic diseases (diabetes, hypertension, and dyslipidemia). Chi-square tests were used to study the association between the selected possible risk factors and the need for hospital admission. Logistic regression was applied to develop the prediction model. Data were split for derivation (60%) and validation (40%). Receiver operating characteristic curves and goodness-of-fit tests were applied to the validation data set to evaluate the model.

Results: Of 317,581 ED patient visits, 30.2% resulted in immediate hospital admission. In the developed predictive model, age, PAC status, and arrival mode were most predictive of the need for immediate hospital inpatient admission. The c-statistic of the receiver operating characteristic (ROC) curve was 0.849 (95% confidence interval [CI] = 0.847 to 0.851). The goodness-of-fit test showed that the predicted patients' admission risks fit the patients' actual admission status well.

Conclusions: A model for predicting the risk of immediate hospital admission at triage for all-cause ED patients was developed and validated using routinely collected hospital data. Early prediction of the need for hospital admission at the time of triage may help identify patients deserving of early admission planning and resource allocation and thus potentially reduce ED overcrowding.

Publication types

  • Validation Study

MeSH terms

  • Adolescent
  • Adult
  • Aged, 80 and over
  • Chronic Disease / therapy
  • Databases, Factual
  • Decision Support Techniques
  • Emergency Service, Hospital / statistics & numerical data*
  • Female
  • Hospitalization / statistics & numerical data*
  • Humans
  • Logistic Models
  • Male
  • Middle Aged
  • Retrospective Studies
  • Risk Assessment / methods*
  • Risk Factors
  • Singapore
  • Triage
  • Young Adult