Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Aug 20:12:424.
doi: 10.1186/1471-2164-12-424.

Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin

Affiliations
Free PMC article
Comparative Study

Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin

Luis Rodríguez-Moreno et al. BMC Genomics. .
Free PMC article

Abstract

Background: The melon belongs to the Cucurbitaceae family, whose economic importance among vegetable crops is second only to Solanaceae. The melon has a small genome size (454 Mb), which makes it suitable for molecular and genetic studies. Despite similar nuclear and chloroplast genome sizes, cucurbits show great variation when their mitochondrial genomes are compared. The melon possesses the largest plant mitochondrial genome, as much as eight times larger than that of other cucurbits.

Results: The nucleotide sequences of the melon chloroplast and mitochondrial genomes were determined. The chloroplast genome (156,017 bp) included 132 genes, with 98 single-copy genes dispersed between the small (SSC) and large (LSC) single-copy regions and 17 duplicated genes in the inverted repeat regions (IRa and IRb). A comparison of the cucumber and melon chloroplast genomes showed differences in only approximately 5% of nucleotides, mainly due to short indels and SNPs. Additionally, 2.74 Mb of mitochondrial sequence, accounting for 95% of the estimated mitochondrial genome size, were assembled into five scaffolds and four additional unscaffolded contigs. An 84% of the mitochondrial genome is contained in a single scaffold. The gene-coding region accounted for 1.7% (45,926 bp) of the total sequence, including 51 protein-coding genes, 4 conserved ORFs, 3 rRNA genes and 24 tRNA genes. Despite the differences observed in the mitochondrial genome sizes of cucurbit species, Citrullus lanatus (379 kb), Cucurbita pepo (983 kb) and Cucumis melo (2,740 kb) share 120 kb of sequence, including the predicted protein-coding regions. Nevertheless, melon contained a high number of repetitive sequences and a high content of DNA of nuclear origin, which represented 42% and 47% of the total sequence, respectively.

Conclusions: Whereas the size and gene organisation of chloroplast genomes are similar among the cucurbit species, mitochondrial genomes show a wide variety of sizes, with a non-conserved structure both in gene number and organisation, as well as in the features of the noncoding DNA. The transfer of nuclear DNA to the melon mitochondrial genome and the high proportion of repetitive DNA appear to explain the size of the largest mitochondrial genome reported so far.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Gene map of the Cucumis melo chloroplast genome. The nucleotide positions are numbered starting at the IRa/LSC junction and extending clockwise. A pair of inverted repeats, IRb and IRa, located at coordinates 86,335 to 112,131 and 130,221 to 156,017, respectively, separates the large single-copy region (LSC) from the small single-copy region (SSC).
Figure 2
Figure 2
Gene density representation of 2.43 Mb of the melon mitochondrial genome. The displayed region corresponds to the largest scaffold obtained, which represents 84% of the estimated melon mitochondrial genome. The symbol ^ connects exons of the same gene, while horizontal lines connect exons of trans-spliced genes. The nad5 gene contains five exons, of which only four are present in the depicted scaffold.

Similar articles

Cited by

References

    1. Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Mol Biol Rep. 1991;9:208–218. doi: 10.1007/BF02672069. - DOI
    1. Ayub R, Guis M, Amor MB, Gillot L, Roustan J-P, Latché A, Bouzayen M, Pech JC. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol. 1996;14:862–866. doi: 10.1038/nbt0796-862. - DOI - PubMed
    1. Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, Puigdomènech P, Pitrat M, Caboche M, Dogimont C, García-Mas J, Aranda MA, Bendahmane A. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 2006;48:452–62. doi: 10.1111/j.1365-313X.2006.02885.x. - DOI - PubMed
    1. Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA. The Fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J. 2004;39:283–297. doi: 10.1111/j.1365-313X.2004.02134.x. - DOI - PubMed
    1. Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, Fabrice Collin M-A, Flowers JM, Pitrat M, Purugganan MD, Dogimont C, Bendahmane A. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science. 2008;321:836–838. doi: 10.1126/science.1159023. - DOI - PubMed

Publication types