Synthesis and characterization of aligned ZnO/BeO core/shell nanocable arrays on glass substrate

Nanoscale Res Lett. 2011 Aug 24;6(1):506. doi: 10.1186/1556-276X-6-506.

Abstract

By sequential hydrothermal growth of ZnO nanowire arrays and thermal evaporation of Be, large-scale vertically aligned ZnO/BeO core/shell nanocable arrays on glass substrate have been successfully synthesized without further heat treatment. Detailed characterizations on the sample morphologies, compositions, and microstructures were systematically carried out, which results disclose the growth behaviors of the ZnO/BeO nanocable. Furthermore, incorporation of BeO shell onto ZnO core resulted in distinct improvement of optical properties of ZnO nanowire, i.e., significant enhancement of near band edge (NBE) emission as well as effective suppression of defects emission in ZnO. In particular, the NBE emission of nanocable sample shows a noticeable blue-shift compared with that of pristine ZnO nanowire, which characteristics most likely originate from Be alloying into ZnO. Consequently, the integration of ZnO and BeO into nanoscale heterostructure could bring up new opportunities in developing ZnO-based device for application in deep ultraviolet region. PACS: 61.46.K; 78.67.Uh; 81.07.Gf.