Comparing dynamic causal models using AIC, BIC and free energy
- PMID: 21864690
- PMCID: PMC3200437
- DOI: 10.1016/j.neuroimage.2011.07.039
Comparing dynamic causal models using AIC, BIC and free energy
Abstract
In neuroimaging it is now becoming standard practise to fit multiple models to data and compare them using a model selection criterion. This is especially prevalent in the analysis of brain connectivity. This paper describes a simulation study which compares the relative merits of three model selection criteria (i) Akaike's Information Criterion (AIC), (ii) the Bayesian Information Criterion (BIC) and (iii) the variational Free Energy. Differences in performance are examined in the context of General Linear Models (GLMs) and Dynamic Causal Models (DCMs). We find that the Free Energy has the best model selection ability and recommend it be used for comparison of DCMs.
Copyright © 2011 Elsevier Inc. All rights reserved.
Figures
Similar articles
-
How to improve parameter estimates in GLM-based fMRI data analysis: cross-validated Bayesian model averaging.Neuroimage. 2017 Sep;158:186-195. doi: 10.1016/j.neuroimage.2017.06.056. Epub 2017 Jun 29. Neuroimage. 2017. PMID: 28669903
-
MACS - a new SPM toolbox for model assessment, comparison and selection.J Neurosci Methods. 2018 Aug 1;306:19-31. doi: 10.1016/j.jneumeth.2018.05.017. Epub 2018 May 26. J Neurosci Methods. 2018. PMID: 29842901
-
Post-hoc selection of dynamic causal models.J Neurosci Methods. 2012 Jun 30;208(1):66-78. doi: 10.1016/j.jneumeth.2012.04.013. Epub 2012 May 4. J Neurosci Methods. 2012. PMID: 22561579 Free PMC article.
-
Sensitivity and specificity of information criteria.Brief Bioinform. 2020 Mar 23;21(2):553-565. doi: 10.1093/bib/bbz016. Brief Bioinform. 2020. PMID: 30895308 Free PMC article. Review.
-
Dynamic causal modelling: a critical review of the biophysical and statistical foundations.Neuroimage. 2011 Sep 15;58(2):312-22. doi: 10.1016/j.neuroimage.2009.11.062. Epub 2009 Dec 1. Neuroimage. 2011. PMID: 19961941 Review.
Cited by
-
Efficient posterior probability mapping using Savage-Dickey ratios.PLoS One. 2013;8(3):e59655. doi: 10.1371/journal.pone.0059655. Epub 2013 Mar 22. PLoS One. 2013. PMID: 23533640 Free PMC article.
-
Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review.Front Neurosci. 2019 Jun 6;13:585. doi: 10.3389/fnins.2019.00585. eCollection 2019. Front Neurosci. 2019. PMID: 31249501 Free PMC article.
-
Sparse Estimation of Resting-State Effective Connectivity From fMRI Cross-Spectra.Front Neurosci. 2018 May 8;12:287. doi: 10.3389/fnins.2018.00287. eCollection 2018. Front Neurosci. 2018. PMID: 29867310 Free PMC article.
-
Using optically pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum.J Physiol. 2019 Aug;597(16):4309-4324. doi: 10.1113/JP277899. Epub 2019 Jul 18. J Physiol. 2019. PMID: 31240719 Free PMC article.
-
Estimating neural response functions from fMRI.Front Neuroinform. 2014 May 8;8:48. doi: 10.3389/fninf.2014.00048. eCollection 2014. Front Neuroinform. 2014. PMID: 24847246 Free PMC article.
References
-
- Akaike H. Information measures and model selection. Bull. Int. Stat. Inst. 1973;50:277–290.
-
- Attias H. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. 1999. Inferring parameters and structure of latent variable models by variational Bayes.
-
- Beal M., Ghahramani Z. The variational Bayesian EM algorithms for incomplete data: with application to scoring graphical model structures. In: Bernardo J., Bayarri M., Berger J., Dawid A., editors. Vol. 7. Cambridge University Press; 2003. (Bayesian Statistics).
-
- Bernardo J.M., Smith A.F.M. Wiley; Chichester: 2000. Bayesian Theory.
-
- Bishop C.M. Springer; 2006. Pattern Recognition and Machine Learning.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
