Antitermination of characterized transcriptional terminators by the Escherichia coli rrnG leader region

J Mol Biol. 1990 May 5;213(1):123-34. doi: 10.1016/S0022-2836(05)80125-1.


We have used a plasmid antitermination test system to examine the response of an Escherichia coli rRNA operon antiterminator to transcription through Rho-dependent and Rho-independent terminator-containing fragments. We also monitored transcription through multiple copies of a terminator to explore the mechanism of rrn antitermination. Four principal observations were made about antitermination and transcriptional terminators. (1) The rrn antiterminator mediated efficient transcription through Rho-dependent terminators. (2) Under the influence of the rrn antiterminator, RNA polymerase transcribed through two and three copies of the Rho-dependent 16 S----terminator with nearly the same efficiency as through one. (3) The antiterminator had less effect on fragments containing Rho-independent terminators; the rpoC t fragment and three fragments derived from the rrnB terminator region stopped antiterminated transcription. Four other Rho-independent terminator fragments were weakly antiterminated in our test system. (4) Surprisingly, the strength of these terminator fragments was not strongly related to properties such as the -delta G or number of trailing uridine residues of their canonical Rho-independent structures, but appears to be related to additional downstream terminators. We have drawn the following conclusions from these experiments. First, that ribosomal antitermination primarily reverses Rho-dependent termination by modifying the RNA polymerase elongation complex. Transcription through a 1700 nucleotide, multiple terminator sequence showed that the antiterminator caused persistent changes in the transcription process. Second, that fragments derived from the Rho-independent rrnB and rpoBC terminator regions can effectively stop antiterminated transcription. Third, that efficient in vivo termination may often involve regions with complex multiple terminators.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cloning, Molecular
  • DNA-Directed RNA Polymerases / metabolism
  • Escherichia coli / genetics*
  • Genes, Regulator*
  • Operon*
  • Rho Factor / metabolism
  • Terminator Regions, Genetic*
  • Transcription, Genetic*


  • Rho Factor
  • DNA-Directed RNA Polymerases