Kinematic measures for assessing gait stability in elderly individuals: a systematic review

J R Soc Interface. 2011 Dec 7;8(65):1682-98. doi: 10.1098/rsif.2011.0416. Epub 2011 Aug 31.


Falls not only present a considerable health threat, but the resulting treatment and loss of working days also place a heavy economic burden on society. Gait instability is a major fall risk factor, particularly in geriatric patients, and walking is one of the most frequent dynamic activities of daily living. To allow preventive strategies to become effective, it is therefore imperative to identify individuals with an unstable gait. Assessment of dynamic stability and gait variability via biomechanical measures of foot kinematics provides a viable option for quantitative evaluation of gait stability, but the ability of these methods to predict falls has generally not been assessed. Although various methods for assessing gait stability exist, their sensitivity and applicability in a clinical setting, as well as their cost-effectiveness, need verification. The objective of this systematic review was therefore to evaluate the sensitivity of biomechanical measures that quantify gait stability among elderly individuals and to evaluate the cost of measurement instrumentation required for application in a clinical setting. To assess gait stability, a comparative effect size (Cohen's d) analysis of variability and dynamic stability of foot trajectories during level walking was performed on 29 of an initial yield of 9889 articles from four electronic databases. The results of this survey demonstrate that linear variability of temporal measures of swing and stance was most capable of distinguishing between fallers and non-fallers, whereas step width and stride velocity prove more capable of discriminating between old versus young (OY) adults. In addition, while orbital stability measures (Floquet multipliers) applied to gait have been shown to distinguish between both elderly fallers and non-fallers as well as between young and old adults, local stability measures (λs) have been able to distinguish between young and old adults. Both linear and nonlinear measures of foot time series during gait seem to hold predictive ability in distinguishing healthy from fall-prone elderly adults. In conclusion, biomechanical measurements offer promise for identifying individuals at risk of falling and can be obtained with relatively low-cost tools. Incorporation of the most promising measures in combined retrospective and prospective studies for understanding fall risk and designing preventive strategies is warranted.

Publication types

  • Research Support, Non-U.S. Gov't
  • Systematic Review

MeSH terms

  • Accidental Falls / prevention & control
  • Activities of Daily Living
  • Aged
  • Aging
  • Algorithms
  • Biomechanical Phenomena
  • Female
  • Gait*
  • Humans
  • Male
  • Postural Balance
  • Risk
  • Risk Factors
  • Self-Help Devices
  • Walking