Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: validation on an independent sample

J Appl Physiol (1985). 2011 Dec;111(6):1804-12. doi: 10.1152/japplphysiol.00309.2011. Epub 2011 Sep 1.

Abstract

Previous work from our laboratory provided a "proof of concept" for use of artificial neural networks (nnets) to estimate metabolic equivalents (METs) and identify activity type from accelerometer data (Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P, J Appl Physiol 107: 1330-1307, 2009). The purpose of this study was to develop new nnets based on a larger, more diverse, training data set and apply these nnet prediction models to an independent sample to evaluate the robustness and flexibility of this machine-learning modeling technique. The nnet training data set (University of Massachusetts) included 277 participants who each completed 11 activities. The independent validation sample (n = 65) (University of Tennessee) completed one of three activity routines. Criterion measures were 1) measured METs assessed using open-circuit indirect calorimetry; and 2) observed activity to identify activity type. The nnet input variables included five accelerometer count distribution features and the lag-1 autocorrelation. The bias and root mean square errors for the nnet MET trained on University of Massachusetts and applied to University of Tennessee were +0.32 and 1.90 METs, respectively. Seventy-seven percent of the activities were correctly classified as sedentary/light, moderate, or vigorous intensity. For activity type, household and locomotion activities were correctly classified by the nnet activity type 98.1 and 89.5% of the time, respectively, and sport was correctly classified 23.7% of the time. Use of this machine-learning technique operates reasonably well when applied to an independent sample. We propose the creation of an open-access activity dictionary, including accelerometer data from a broad array of activities, leading to further improvements in prediction accuracy for METs, activity intensity, and activity type.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Validation Study

MeSH terms

  • Acceleration
  • Actigraphy / statistics & numerical data
  • Adult
  • Algorithms*
  • Artificial Intelligence
  • Female
  • Humans
  • Male
  • Metabolic Equivalent*
  • Middle Aged
  • Motor Activity*
  • Neural Networks, Computer*
  • Regression Analysis