Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug;9(8):e1001127.
doi: 10.1371/journal.pbio.1001127. Epub 2011 Aug 23.

How Many Species Are There on Earth and in the Ocean?

Free PMC article

How Many Species Are There on Earth and in the Ocean?

Camilo Mora et al. PLoS Biol. .
Free PMC article


The diversity of life is one of the most striking aspects of our planet; hence knowing how many species inhabit Earth is among the most fundamental questions in science. Yet the answer to this question remains enigmatic, as efforts to sample the world's biodiversity to date have been limited and thus have precluded direct quantification of global species richness, and because indirect estimates rely on assumptions that have proven highly controversial. Here we show that the higher taxonomic classification of species (i.e., the assignment of species to phylum, class, order, family, and genus) follows a consistent and predictable pattern from which the total number of species in a taxonomic group can be estimated. This approach was validated against well-known taxa, and when applied to all domains of life, it predicts ~8.7 million (± 1.3 million SE) eukaryotic species globally, of which ~2.2 million (± 0.18 million SE) are marine. In spite of 250 years of taxonomic classification and over 1.2 million species already catalogued in a central database, our results suggest that some 86% of existing species on Earth and 91% of species in the ocean still await description. Renewed interest in further exploration and taxonomy is required if this significant gap in our knowledge of life on Earth is to be closed.

Conflict of interest statement

The authors have declared that no competing interests exist.


Figure 1
Figure 1. Predicting the global number of species in Animalia from their higher taxonomy.
(A–F) The temporal accumulation of taxa (black lines) and the frequency of the multimodel fits to all starting years selected (graded colors). The horizontal dashed lines indicate the consensus asymptotic number of taxa, and the horizontal grey area its consensus standard error. (G) Relationship between the consensus asymptotic number of higher taxa and the numerical hierarchy of each taxonomic rank. Black circles represent the consensus asymptotes, green circles the catalogued number of taxa, and the box at the species level indicates the 95% confidence interval around the predicted number of species (see Materials and Methods).
Figure 2
Figure 2. Validating the higher taxon approach.
We compared the number of species estimated from the higher taxon approach implemented here to the known number of species in relatively well-studied taxonomic groups as derived from published sources . We also used estimations from multimodel averaging from species accumulation curves for taxa with near-complete inventories. Vertical lines indicate the range of variation in the number of species from different sources. The dotted line indicates the 1∶1 ratio. Note that published species numbers (y-axis values) are mostly derived from expert approximations for well-known groups; hence there is a possibility that those estimates are subject to biases arising from synonyms.
Figure 3
Figure 3. Assessment of factors affecting the higher taxon approach.
(A–E) To test the effects of changes in higher taxonomy, we performed a sensitivity analysis in which the number of species was calculated after altering the number of higher taxa. We used Animalia as a test case. For each taxonomic level, we added or removed a random proportion of taxa from 10% to 100% of the current number of taxa and recalculated the number of species using our method. The test was repeated 1,000 times and the average and 95% confidence limits of the simulations are shown as points and dark areas, respectively. Light gray lines and boxes indicate the currently estimated number of species and its 95% prediction interval, respectively. Our current estimation of the number of species appear robust to changes in higher taxonomy as in most cases changes in higher taxonomy led to estimations that remained within the current estimated number of species. The results for changes in all possible combinations of taxonomic levels are shown in Figure S2. (F–J) The yearly ratio of new higher taxa in Animalia (black points and red line) and the yearly number of new species (grey line); this reflects the fraction of newly described species that also represent new higher taxa. The contrasting patterns in the description of new species and new higher taxa suggest that taxonomic effort is probably not driving observed flattening of accumulation curves in higher taxonomic levels as there is at least sufficient effort to maintain a constant description of new species. (K–O) Sensitivity analysis on the completeness of taxonomic inventories. To assess the extent to which incomplete inventories affect the predicted consensus asymptotic values obtained from the temporal accumulation of taxa, we performed a sensitivity analysis in which the consensus asymptotic number of taxa was calculated from curves at different levels of completeness. We used the accumulation curves at the genus level for major groups of vertebrates, given the relative completeness of these data (i.e., reaching an asymptote). Vertical lines indicate the consensus standard error. (P–T) Frequency distribution of the number of subordinate taxa at different taxonomic levels. For display purposes we present only the data for Animalia; lines and test statistics are from a regression model fitted with a power function.

Comment in

Similar articles

See all similar articles

Cited by 278 articles

See all "Cited by" articles


    1. May R. Tropical arthropod species, more or less? Science. 2010;329:41–42. - PubMed
    1. May R. M. How many species inhabit the earth? Sci Amer. 1992;10:18–24.
    1. Storks N. How many species are there? Biodiv Conserv. 1993;2:215–232.
    1. Gaston K, Blackburn T. Blackwell Science Ltd; 2000. Pattern and process in macroecology.
    1. Erwin T. L. How many species are there? Revisited. Conserv Biol. 1991;5:1–4.

Publication types