Ghrelin is a 28-amino acid peptide hormone produced in the stomach. It binds to the growth hormone secretagogue receptor 1a (GHS-R1a), a class A G-protein-coupled receptor. In the present study, we describe the design, synthesis and characterization of a truncated, 18-amino acid analog of ghrelin conjugated to a fluorescent molecule, fluorocein isothiocyanate (FITC), through the addition of a lysine at its C terminus ([Dpr(octanoyl)(3), Lys(fluorescein)(19)]ghrelin(1-19)). Receptor binding affinity of this novel fluorescein-ghrelin(1-18) was similar to that of wild-type ghrelin and a synthetic GHS-R1a ligand, hexarelin. Live cell imaging in CHO/GHS-R1a cells demonstrated cell surface receptor labeling and internalization, and agonist activity of fluorescein-ghrelin(1-18) was confirmed by increased phosphorylation of ERK1/2. We also show that GHS-R1a protein is expressed primarily in the heart when compared to all other organs, suggesting high receptor density in the left ventricle. Finally, we demonstrate that fluorescein-ghrelin(1-18) binds specifically to heart tissue in situ, and its binding is displaced by both wt ghrelin and hexarelin. We have therefore developed a novel imaging probe, fluorescein-ghrelin(1-18), that can be used to image GHS-R1a in situ, for the purposes of investigating mechanisms of receptor trafficking or pharmacological agents that target GHS-R1a.
Copyright © 2011 Elsevier B.V. All rights reserved.