miR-143 overexpression impairs growth of human colon carcinoma xenografts in mice with induction of apoptosis and inhibition of proliferation

PLoS One. 2011;6(8):e23787. doi: 10.1371/journal.pone.0023787. Epub 2011 Aug 25.


Background: MicroRNAs (miRNAs) are aberrantly expressed in human cancer and involved in the (dys)regulation of cell survival, proliferation, differentiation and death. Specifically, miRNA-143 (miR-143) is down-regulated in human colon cancer. In the present study, we evaluated the role of miR-143 overexpression on the growth of human colon carcinoma cells xenografted in nude mice (immunodeficient mouse strain: N: NIH(s) II-nu/nu).

Methodology/principal findings: HCT116 cells with stable miR-143 overexpression (Over-143) and control (Empty) cells were subcutaneously injected into the flanks of nude mice, and tumor growth was evaluated over time. Tumors arose ∼ 14 days after tumor cell implantation, and the experiment was ended at 40 days after implantation. miR-143 was confirmed to be significantly overexpressed in Over-143 versus Empty xenografts, by TaqMan® Real-time PCR (p<0.05). Importantly, Over-143 xenografts displayed slower tumor growth compared to Empty xenografts from 23 until 40 days in vivo (p<0.05), with final volumes of 928±338 and 2512±387 mm(3), respectively. Evaluation of apoptotic proteins showed that Over-143 versus Empty xenografts displayed reduced Bcl-2 levels, and increased caspase-3 activation and PARP cleavage (p<0.05). In addition, the incidence of apoptotic tumor cells, assessed by TUNEL, was increased in Over-143 versus Empty xenografts (p<0.01). Finally, Over-143 versus Empty xenografts displayed significantly reduced NF-κB activation and ERK5 levels and activation (p<0.05), as well as reduced proliferative index, evaluated by Ki-67 immunohistochemistry (p<0.01).

Conclusions: Our results suggest that reduced tumor volume in Over-143 versus Empty xenografts may result from increased apoptosis and decreased proliferation induced by miR-143. This reinforces the relevance of miR-143 in colon cancer, indicating an important role in the control of in vivo tumor progression, and suggesting that miR-143 may constitute a putative novel therapeutic tool for colon cancer treatment that warrants further investigation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / genetics
  • Apoptosis / physiology*
  • Cell Proliferation
  • Colonic Neoplasms / genetics
  • Colonic Neoplasms / metabolism*
  • HCT116 Cells
  • Humans
  • Immunohistochemistry
  • In Situ Nick-End Labeling
  • Mice
  • Mice, Nude
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Xenograft Model Antitumor Assays


  • MIRN143 microRNA, human
  • MicroRNAs