Resistance training changes LDL metabolism in normolipidemic subjects: a study with a nanoemulsion mimetic of LDL

Atherosclerosis. 2011 Dec;219(2):532-7. doi: 10.1016/j.atherosclerosis.2011.08.014. Epub 2011 Aug 22.

Abstract

Objective: To evaluate the effects of resistance training (RT) on the metabolism of an LDL-like nanoemulsion and on lipid transfer to HDL, an important step of HDL metabolism.

Methods: LDL-like nanoemulsion plasma kinetics was studied in 15 healthy men under regular RT for 1-4 years (age = 25 ± 5 years, VO(2)peak = 50 ± 6 mL/kg/min) and in 15 healthy sedentary men (28 ± 7 years, VO(2)peak = 35 ± 9 mL/kg/min). LDL-like nanoemulsion labeled with (14)C-cholesteryl-ester and (3)H-free-cholesterol was injected intravenously, plasma samples were collected over 24-h to determine decay curves and fractional clearance rates (FCR). Lipid transfer to HDL was determined in vitro by incubating of plasma samples with nanoemulsions (lipid donors) labeled with radioactive free-cholesterol, cholesteryl-ester, triacylglycerols and phospholipids. HDL size, paraoxonase-1 activity and oxidized LDL levels were also determined.

Results: The two groups showed similar LDL and HDL-cholesterol and triacylglycerols, but oxidized LDL was lower in RT (30 ± 9 vs. 61 ± 19 U/L, p = 0.0005). In RT, the nanoemulsion (14)C-cholesteryl-ester was removed twice as fast than in sedentary individuals (FCR: 0.068 ± 0.023 vs. 0.037 ± 0.028, p = 0.002), as well as (3)H-free-cholesterol (0.041 ± 0.025 vs. 0.022 ± 0.023, p = 0.04). While both nanoemulsion labels were removed at the same rate in sedentary individuals, RT (3)H-free-cholesterol was removed slower than (14)C-cholesteryl-ester (p = 0.005). HDL size, paraoxonase 1 and the transfer rates to HDL of the four lipids were the same in both groups.

Conclusions: RT accelerated the clearance of LDL-like nanoemulsion, which probably accounts for the oxidized LDL levels reduction in RT. RT also changed the balance of free and esterified cholesterol FCR's. However, RT had no effect on HDL metabolism related parameters.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aryldialkylphosphatase / blood
  • Brazil
  • Cholesterol Esters / administration & dosage
  • Cholesterol Esters / blood
  • Cholesterol Esters / pharmacokinetics*
  • Cholesterol, HDL / blood
  • Cholesterol, LDL / administration & dosage
  • Cholesterol, LDL / blood
  • Cholesterol, LDL / pharmacokinetics*
  • Emulsions
  • Humans
  • Injections, Intravenous
  • Lipoproteins, LDL / blood
  • Male
  • Nanoparticles
  • Oxygen Consumption
  • Particle Size
  • Phospholipids / blood
  • Resistance Training*
  • Sedentary Behavior*
  • Triglycerides / blood
  • Young Adult

Substances

  • Cholesterol Esters
  • Cholesterol, HDL
  • Cholesterol, LDL
  • Emulsions
  • Lipoproteins, LDL
  • Phospholipids
  • Triglycerides
  • oxidized low density lipoprotein
  • Aryldialkylphosphatase
  • PON1 protein, human