Biological and pharmacological roles of HCA receptors

Adv Pharmacol. 2011:62:219-50. doi: 10.1016/B978-0-12-385952-5.00005-1.

Abstract

The hydroxy-carboxylic acid (HCA) receptors HCA(1), HCA(2), and HCA(3) were previously known as GPR81, GPR109A, and GPR109B, respectively, or as the nicotinic acid receptor family. They form a cluster of G protein-coupled receptors with high sequence homology. Recently, intermediates of energy metabolism, all HCAs, have been reported as endogenous ligands for each of these receptors. The HCA receptors are predominantly expressed on adipocytes and mediate the inhibition of lipolysis by coupling to G(i)-type proteins. HCA(1) is activated by lactate, HCA(2) by the ketone body 3-hydroxy-butyrate, and HCA(3) by hydroxylated β-oxidation intermediates, especially 3-hydroxy-octanoic acid. Both HCA(2) and HCA(3) are part of a negative feedback loop which keeps the release of fat stores in check under starvation conditions, whereas HCA(1) plays a role in the antilipolytic (fat-conserving) effect of insulin. HCA(2) was first discovered as the molecular target of the antidyslipidemic drug nicotinic acid (or niacin). Many synthetic agonists have since been designed for HCA(2) and HCA(3), but the development of a new, improved HCA-targeted drug has not been successful so far, despite a number of clinical studies. Recently, it has been shown that the major side effect of nicotinic acid, skin flushing, is mediated by HCA(2) receptors on keratinocytes, as well as on Langerhans cells in the skin. In this chapter, we summarize the latest developments in the field of HCA receptor research, with emphasis on (patho)physiology, receptor pharmacology, major ligand classes, and the therapeutic potential of HCA ligands.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Models, Molecular
  • Mutagenesis / genetics
  • Pharmaceutical Preparations / metabolism*
  • Receptors, G-Protein-Coupled / agonists
  • Receptors, G-Protein-Coupled / classification
  • Receptors, G-Protein-Coupled / genetics
  • Receptors, G-Protein-Coupled / metabolism*
  • Signal Transduction
  • Tissue Distribution

Substances

  • Pharmaceutical Preparations
  • Receptors, G-Protein-Coupled