RosettaRemodel: a generalized framework for flexible backbone protein design
- PMID: 21909381
- PMCID: PMC3166072
- DOI: 10.1371/journal.pone.0024109
RosettaRemodel: a generalized framework for flexible backbone protein design
Abstract
We describe RosettaRemodel, a generalized framework for flexible protein design that provides a versatile and convenient interface to the Rosetta modeling suite. RosettaRemodel employs a unified interface, called a blueprint, which allows detailed control over many aspects of flexible backbone protein design calculations. RosettaRemodel allows the construction and elaboration of customized protocols for a wide range of design problems ranging from loop insertion and deletion, disulfide engineering, domain assembly, loop remodeling, motif grafting, symmetrical units, to de novo structure modeling.
Conflict of interest statement
Figures
Similar articles
-
A computational method for the design of nested proteins by loop-directed domain insertion.Proteins. 2018 Mar;86(3):354-369. doi: 10.1002/prot.25445. Epub 2018 Jan 24. Proteins. 2018. PMID: 29250820
-
Integration of the Rosetta suite with the python software stack via reproducible packaging and core programming interfaces for distributed simulation.Protein Sci. 2020 Jan;29(1):43-51. doi: 10.1002/pro.3721. Epub 2019 Dec 2. Protein Sci. 2020. PMID: 31495995 Free PMC article.
-
Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.PLoS One. 2011;6(7):e20451. doi: 10.1371/journal.pone.0020451. Epub 2011 Jul 18. PLoS One. 2011. PMID: 21789164 Free PMC article.
-
Designing protein structures and complexes with the molecular modeling program Rosetta.J Biol Chem. 2019 Dec 13;294(50):19436-19443. doi: 10.1074/jbc.AW119.008144. Epub 2019 Nov 7. J Biol Chem. 2019. PMID: 31699898 Free PMC article. Review.
-
Protocols for Molecular Modeling with Rosetta3 and RosettaScripts.Biochemistry. 2016 Aug 30;55(34):4748-63. doi: 10.1021/acs.biochem.6b00444. Epub 2016 Aug 16. Biochemistry. 2016. PMID: 27490953 Free PMC article. Review.
Cited by
-
Design of amyloidogenic peptide traps.Nat Chem Biol. 2024 Mar 19. doi: 10.1038/s41589-024-01578-5. Online ahead of print. Nat Chem Biol. 2024. PMID: 38503834
-
DIProT: A deep learning based interactive toolkit for efficient and effective Protein design.Synth Syst Biotechnol. 2024 Feb 8;9(2):217-222. doi: 10.1016/j.synbio.2024.01.011. eCollection 2024 Jun. Synth Syst Biotechnol. 2024. PMID: 38385151 Free PMC article.
-
Sparks of function by de novo protein design.Nat Biotechnol. 2024 Feb;42(2):203-215. doi: 10.1038/s41587-024-02133-2. Epub 2024 Feb 15. Nat Biotechnol. 2024. PMID: 38361073 Review.
-
A general platform for targeting MHC-II antigens via a single loop.bioRxiv [Preprint]. 2024 Jan 30:2024.01.26.577489. doi: 10.1101/2024.01.26.577489. bioRxiv. 2024. PMID: 38352315 Free PMC article. Preprint.
-
Computational design and engineering of self-assembling multivalent microproteins with therapeutic potential against SARS-CoV-2.J Nanobiotechnology. 2024 Feb 10;22(1):58. doi: 10.1186/s12951-024-02329-3. J Nanobiotechnology. 2024. PMID: 38341574 Free PMC article.
References
-
- Cochran FV, Wu SP, Wang W, Nanda V, Saven JG, et al. Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor. Journal of the American Chemical Society. 2005;127:1346–1347. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
