Identification and mechanism of regulation of the zebrafish dorsal determinant
- PMID: 21911385
- PMCID: PMC3179059
- DOI: 10.1073/pnas.1106801108
Identification and mechanism of regulation of the zebrafish dorsal determinant
Abstract
In vertebrates, the animal-vegetal axis is determined during oogenesis and at ovulation, the egg is radially symmetric. In anamniotes, following fertilization, a microtubule-dependent movement leads to the displacement of maternal dorsal determinants from the vegetal pole to the future dorsal side of the embryo, providing the initial breaking of radial symmetry [Weaver C, Kimelman D (2004) Development 131:3491-3499]. These dorsal determinants induce β-catenin nuclear translocation in dorsal cells of the blastula. Previous work in amphibians has shown that secreted Wnt11/5a complexes, regulated by the Wnt antagonist Dkk-1, are required for the initiation of embryonic axis formation [Cha et al. (2009) Curr Biol 29:1573-1580]. In the current study, we determined that the vegetal maternal dorsal determinant in fish is not the Wnt11/5a complex but the canonical Wnt, Wnt8a. Translation of this mRNA and secretion of the Wnt8a protein result in a dorsal-to-ventral gradient of Wnt stimulation, extending across the entire embryo. This gradient is counterbalanced by two Wnt inhibitors, Sfrp1a and Frzb. These proteins are essential to restrict the activation of the canonical Wnt pathway to the dorsal marginal blastomeres by defining the domain where the Wnt8a activity gradient is above the threshold value necessary for triggering the canonical β-catenin pathway. In summary, this study establishes that the zebrafish maternal dorsal determinant, Wnt8a, is required to localize the primary dorsal center, and that the extent of this domain is defined by the activity of two maternally provided Wnt antagonists, Sfrp1a and Frzb.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
Cortical depth and differential transport of vegetally localized dorsal and germ line determinants in the zebrafish embryo.Bioarchitecture. 2014;5(1-2):13-26. doi: 10.1080/19490992.2015.1080891. Bioarchitecture. 2014. PMID: 26528729 Free PMC article.
-
Roles of maternal wnt8a transcripts in axis formation in zebrafish.Dev Biol. 2018 Feb 1;434(1):96-107. doi: 10.1016/j.ydbio.2017.11.016. Epub 2017 Dec 5. Dev Biol. 2018. PMID: 29208373
-
GSK-3 activity is critical for the orientation of the cortical microtubules and the dorsoventral axis determination in zebrafish embryos.PLoS One. 2012;7(5):e36655. doi: 10.1371/journal.pone.0036655. Epub 2012 May 4. PLoS One. 2012. PMID: 22574208 Free PMC article.
-
The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish.Curr Top Dev Biol. 2020;140:341-389. doi: 10.1016/bs.ctdb.2020.05.002. Epub 2020 Jun 16. Curr Top Dev Biol. 2020. PMID: 32591080 Review.
-
Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes.Dev Biol. 2002 Jan 15;241(2):209-28. doi: 10.1006/dbio.2001.0503. Dev Biol. 2002. PMID: 11784106 Review.
Cited by
-
Regeneration-associated WNT signaling is activated in long-term reconstituting AC133bright acute myeloid leukemia cells.Neoplasia. 2012 Dec;14(12):1236-48. doi: 10.1593/neo.121480. Neoplasia. 2012. PMID: 23308055 Free PMC article.
-
The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation.Dev Biol. 2015 May 15;401(2):249-63. doi: 10.1016/j.ydbio.2015.01.028. Epub 2015 Mar 7. Dev Biol. 2015. PMID: 25753733 Free PMC article.
-
Chemokine GPCR signaling inhibits β-catenin during zebrafish axis formation.PLoS Biol. 2012;10(10):e1001403. doi: 10.1371/journal.pbio.1001403. Epub 2012 Oct 9. PLoS Biol. 2012. PMID: 23055828 Free PMC article.
-
New Insights into the Identity of the DFNA58 Gene.Genes (Basel). 2022 Dec 2;13(12):2274. doi: 10.3390/genes13122274. Genes (Basel). 2022. PMID: 36553541 Free PMC article.
-
Wnt evolution and function shuffling in liberal and conservative chordate genomes.Genome Biol. 2018 Jul 25;19(1):98. doi: 10.1186/s13059-018-1468-3. Genome Biol. 2018. PMID: 30045756 Free PMC article.
References
-
- Schneider S, Steinbeisser H, Warga RM, Hausen P. β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev. 1996;57:191–198. - PubMed
-
- Dougan ST, Warga RM, Kane DA, Schier AF, Talbot WS. The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development. 2003;130:1837–1851. - PubMed
-
- Bellipanni G, et al. Essential and opposing roles of zebrafish β-catenins in the formation of dorsal axial structures and neurectoderm. Development. 2006;133:1299–1309. - PubMed
-
- Kelly C, Chin AJ, Leatherman JL, Kozlowski DJ, Weinberg ES. Maternally controlled (β)-catenin-mediated signaling is required for organizer formation in the zebrafish. Development. 2000;127:3899–3911. - PubMed
-
- Ober EA, Schulte-Merker S. Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev Biol. 1999;215:167–181. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
