Role of microRNAs in central nervous system development and pathology

J Neurosci Res. 2012 Jan;90(1):1-12. doi: 10.1002/jnr.22701. Epub 2011 Sep 15.

Abstract

Gene expression regulation is essential for correct functioning of the cell. Complex processes such as development, apoptosis, cell differentiation, and cell cycling require a fine tuning of gene expression. MicroRNAs (miRNAs) are small RNAs that have been recognized as key components of the gene expression regulatory machinery. By sequence complementarity, miRNAs recognize target mRNAs and inhibit their function through degradation or by repressing their translation. The development of the central nervous system (CNS) requires precise and exquisitely regulated gene expression patterns. It is now widely recognized that miRNAs have the capacity to provide such fine regulation both in time and in space. High-throughput analyses as well as classical molecular biology approaches have allowed the identification of essential miRNAs for CNS development and function. Moreover, recent studies in several model organisms are beginning to show intricate regulatory networks involving miRNAs, transcription factors, and epigenetic regulators during CNS development. Here we review recent findings on the role that miRNAs play in the development of the CNS as well as in neuropathologies such as schizophrenia, Parkinson disease, and Alzheimer's disease, among others.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Central Nervous System / growth & development*
  • Central Nervous System / pathology*
  • Gene Expression Regulation / physiology*
  • Humans
  • MicroRNAs / metabolism*
  • Neurodegenerative Diseases / pathology*

Substances

  • MicroRNAs