Biochemical markers of bone turnover for the clinical assessment of metabolic bone disease

Endocrinol Metab Clin North Am. 1990 Mar;19(1):1-18.

Abstract

There is not yet an ideal marker of bone formation, but circulating BGP is the most satisfactory at present. New developments include the use of sheep BGP64 and human BGP85 as an immunogen and monoclonal antibodies, which may recognize fragments of BGP released during resorption. The specific measurement of bone alkaline phosphatase and the assay of procollagen fragments and of other noncollagenous bone-related proteins will allow a more precise assessment of the complex osteoblastic functions in normal and pathologic conditions. Finding a sensitive and specific marker of resorption is a challenge because all constituents of bone matrix are likely to be degraded into minute peptides during osteoclastic bone resorption. The measurement of pyridinium crosslinks and possibly of tartrate-resistant acid phosphate by a bone-specific monoclonal antibody are the most tangible improvements in this area. These markers need to be validated by comparison with data obtained by direct measurement of bone turnover on iliac crest biopsy. It should be remembered, however, that circulating markers reflect the overall activity of the whole skeleton, including the cortical, subcortical, and trabecular envelopes, which have different remodeling rates in normal and abnormal states. A circulating marker will not detect a specific defect of the cellular activity of one compartment of bone if the summated turnover of the skeleton is unchanged. Conversely, bone histomorphometry is limited to a small area of the trabecular envelope but allows detection of a specific defect at the cellular level. These differences should be kept in mind, as there is growing evidence that, for example, bone mass and bone turnover of osteoporotic patients before and during treatment vary in different appendicular/axial and cortical/trabecular compartments. Finally, a single marker might be valuable in some diseases and not in others (such as serum BGP in Paget's disease of bone). Despite these difficulties, significant advances have been made in the last few years in the bone marker field. In the future, the development of a battery of several bone-specific markers that indicate various aspects of the complex mechanisms of bone formation, resorption, and mineralization is likely to provide new tools for the diagnosis and management of bone diseases.

Publication types

  • Review

MeSH terms

  • Biomarkers*
  • Bone Diseases, Metabolic / metabolism*
  • Bone Resorption / metabolism
  • Humans

Substances

  • Biomarkers