Lightning and the Heart: Fractal Behavior in Cardiac Function

Proc IEEE Inst Electr Electron Eng. 2002 Aug 6;76(6):693-699. doi: 10.1109/5.4458.


Physical systems, from galactic clusters to diffusing molecules, often show fractal behavior. Likewise, living systems might often be well described by fractal algorithms. Such fractal descriptions in space and time imply that there is order in chaos, or put the other way around, chaotic dynamical systems in biology are more constrained and orderly than seen at first glance. The vascular network, the syncytium of cells, the processes of diffusion and transmembrane transport might be fractal features of the heart. These fractal features provide a basis which enables one to understand certain aspects of more global behavior such as atrial or ventricular fibrillation and perfusion heterogeneity. The heart might be regarded as a prototypical organ from these points of view. A particular example of the use of fractal geometry is in explaining myocardial flow heterogeneity via delivery of blood through an asymmetrical fractal branching network.