Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy

Circulation. 2011 Oct 25;124(17):1838-47. doi: 10.1161/CIRCULATIONAHA.111.032680. Epub 2011 Sep 26.

Abstract

Background: A variety of studies carried out using either human subjects or laboratory animals suggest that vitamin D and its analogues possess important beneficial activity in the cardiovascular system. Using Cre-Lox technology we have selectively deleted the vitamin D receptor (VDR) gene in the cardiac myocyte in an effort to better understand the role of vitamin D in regulating myocyte structure and function.

Methods and results: Targeted deletion of the exon 4 coding sequence in the VDR gene resulted in an increase in myocyte size and left ventricular weight/body weight versus controls both at baseline and following a 7-day infusion of isoproterenol. There was no increase in interstitial fibrosis. These knockout mice demonstrated a reduction in end-diastolic and end-systolic volume by echocardiography, activation of the fetal gene program (ie, increased atrial natriuretic peptide and alpha skeletal actin gene expression), and increased expression of modulatory calcineurin inhibitory protein 1 (MCIP1), a direct downstream target of calcineurin/nuclear factor of activated T cell signaling. Treatment of neonatal cardiomyocytes with 1,25-dihydroxyvitamin D partially reduced isoproterenol-induced MCIP1 mRNA and protein levels and MCIP1 gene promoter activity.

Conclusions: Collectively, these studies demonstrate that the vitamin D-VDR signaling system possesses direct, antihypertrophic activity in the heart. This appears to involve, at least in part, suppression of the prohypertrophic calcineurin/NFAT/MCIP1 pathway. These studies identify a potential mechanism to account for the reported beneficial effects of vitamin D in the cardiovascular system.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cardiomegaly / etiology*
  • Cardiomegaly / genetics*
  • Cardiomegaly / metabolism
  • Gene Deletion*
  • Gene Targeting
  • Mice
  • Mice, 129 Strain
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Myocytes, Cardiac / metabolism*
  • Myocytes, Cardiac / pathology
  • Receptors, Calcitriol / deficiency*
  • Receptors, Calcitriol / genetics*

Substances

  • Receptors, Calcitriol