Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874

Appl Environ Microbiol. 2011 Dec;77(23):8370-81. doi: 10.1128/AEM.06136-11. Epub 2011 Sep 30.

Abstract

Genome reduction strategies to create genetically improved cellular biosynthesis machineries for proteins and other products have been pursued by use of a wide range of bacteria. We reported previously that the novel Bacillus subtilis strain MGB874, which was derived from strain 168 and has a total genomic deletion of 874 kb (20.7%), exhibits enhanced production of recombinant enzymes. However, it was not clear how the genomic reduction resulted in elevated enzyme production. Here we report that deletion of the rocDEF-rocR region, which is involved in arginine degradation, contributes to enhanced enzyme production in strain MGB874. Deletion of the rocDEF-rocR region caused drastic changes in glutamate metabolism, leading to improved cell yields with maintenance of enzyme productivity. Notably, the specific enzyme productivity was higher in the reduced-genome strain, with or without the rocDEF-rocR region, than in wild-type strain 168. The high specific productivity in strain MGB874 is likely attributable to the higher expression levels of the target gene resulting from an increased promoter activity and plasmid copy number. Thus, the combined effects of the improved cell yield by deletion of the rocDEF-rocR region and the increased specific productivity by deletion of another gene(s) or the genomic reduction itself enhanced the production of recombinant enzymes in MGB874. Our findings represent a good starting point for the further improvement of B. subtilis reduced-genome strains as cell factories for the production of heterologous enzymes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacillus subtilis / genetics*
  • Bacillus subtilis / metabolism*
  • Enzymes / biosynthesis*
  • Enzymes / genetics*
  • Gene Dosage
  • Genome, Bacterial
  • Glutamic Acid / metabolism
  • Plasmids
  • Promoter Regions, Genetic
  • Recombinant Proteins / biosynthesis*
  • Recombinant Proteins / genetics*
  • Sequence Deletion

Substances

  • Enzymes
  • Recombinant Proteins
  • Glutamic Acid