Nuclear-cytoplasmic Interactions Reduce Male Fertility in Hybrids of Arabidopsis Lyrata Subspecies

Evolution. 2011 Oct;65(10):2959-72. doi: 10.1111/j.1558-5646.2011.01361.x. Epub 2011 Jun 20.

Abstract

We examined the level of postzygotic reproductive isolation in F(1) and F(2) hybrids of reciprocal crosses between the Arabidopsis lyrata subspecies lyrata (North American) and petraea (European). Our main results are: first, the percentage of fertile pollen was significantly reduced in the F(1) and F(2) compared to the parental populations. Second, mean pollen fertility differed markedly between reciprocal crosses: 84% in the F(2) with ssp. lyrata cytoplasm and 61% in the F(2) with ssp. petraea cytoplasm. Third, 17% of the F(2) with ssp. petraea cytoplasm showed male sterility (produced less than 30 pollen grains in our subsample). The hybrids were female fertile. We used QTL mapping to find the genomic regions that determine pollen fertility and that restore cytoplasmic male sterility (CMS). In the F(2) with ssp. lyrata cytoplasm, an epistatic pair of QTLs was detected. In the reciprocal F(2) progeny, four QTLs demonstrated within-population polymorphism for hybrid male sterility. In addition, in the F(2) with ssp. petraea cytoplasm, there was a strong male fertility restorer locus on chromosome 2 where a cluster of CMS restorer gene-related PPR genes have been found in A. lyrata. Our results underline the importance of cytonuclear interactions in understanding genetics of the early stages of speciation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / cytology
  • Arabidopsis / genetics
  • Arabidopsis / physiology*
  • Cell Nucleus / physiology*
  • Chromosome Mapping
  • Cytoplasm / physiology*
  • Fertility / genetics
  • Genome, Plant
  • Genotype
  • Hybridization, Genetic
  • Infertility / genetics
  • Quantitative Trait Loci