Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 11, 288

In Search of the Genetic Footprints of Sumerians: A Survey of Y-chromosome and mtDNA Variation in the Marsh Arabs of Iraq

Affiliations

In Search of the Genetic Footprints of Sumerians: A Survey of Y-chromosome and mtDNA Variation in the Marsh Arabs of Iraq

Nadia Al-Zahery et al. BMC Evol Biol.

Abstract

Background: For millennia, the southern part of the Mesopotamia has been a wetland region generated by the Tigris and Euphrates rivers before flowing into the Gulf. This area has been occupied by human communities since ancient times and the present-day inhabitants, the Marsh Arabs, are considered the population with the strongest link to ancient Sumerians. Popular tradition, however, considers the Marsh Arabs as a foreign group, of unknown origin, which arrived in the marshlands when the rearing of water buffalo was introduced to the region.

Results: To shed some light on the paternal and maternal origin of this population, Y chromosome and mitochondrial DNA (mtDNA) variation was surveyed in 143 Marsh Arabs and in a large sample of Iraqi controls. Analyses of the haplogroups and sub-haplogroups observed in the Marsh Arabs revealed a prevalent autochthonous Middle Eastern component for both male and female gene pools, with weak South-West Asian and African contributions, more evident in mtDNA. A higher male than female homogeneity is characteristic of the Marsh Arab gene pool, likely due to a strong male genetic drift determined by socio-cultural factors (patrilocality, polygamy, unequal male and female migration rates).

Conclusions: Evidence of genetic stratification ascribable to the Sumerian development was provided by the Y-chromosome data where the J1-Page08 branch reveals a local expansion, almost contemporary with the Sumerian City State period that characterized Southern Mesopotamia. On the other hand, a more ancient background shared with Northern Mesopotamia is revealed by the less represented Y-chromosome lineage J1-M267*. Overall our results indicate that the introduction of water buffalo breeding and rice farming, most likely from the Indian sub-continent, only marginally affected the gene pool of autochthonous people of the region. Furthermore, a prevalent Middle Eastern ancestry of the modern population of the marshes of southern Iraq implies that if the Marsh Arabs are descendants of the ancient Sumerians, also the Sumerians were most likely autochthonous and not of Indian or South Asian ancestry.

Figures

Figure 1
Figure 1
Map of Iraq illustrating present and former Marsh areas. The majority of the subjects analysed in this study are from the Al-Hawizah Marshes, the only natural remaining marsh area in southern Iraq [4].
Figure 2
Figure 2
Phylogeny of Y-chromosome haplogroups and their frequencies (%) in Marsh Arab and Iraqi populations. Haplogroups are labelled according to the Y Chromosome Consortium [17,18] and the International Society of Genetic Genealogy [16]. Differently from previously reported [19], the M365 mutation was observed in two J1-Page08 Y-chromosomes (Marsh Arabs). In these two subjects, M365 was observed in association with the new mutation L267.2 discovered while typing the M365 marker. It consists of an A to G transition at nucleotide position 159. The markers P37, M253, M223 of haplogroup I, M81 and M293 of haplogroups E, and M367, M368 and M369 of haplogroup J1 were typed but not observed. A star (*) indicates a paragroup: a group of Y chromosomes not defined by any reported phylogenetic downstream mutation. nt: not tested. (a) Heterogeneity.
Figure 3
Figure 3
Principal component analyses of Y-chromosome and mtDNA haplogroup frequencies. The PCA analyses were carried out on haplogroups listed in Additional files 3 and 4. Haplogroups with frequencies lower than 5% in all the populations were not considered. On the whole, 28% of the total variance is represented for the Y-chromosome (16% by the first PC and 12% by the second PC) and 39% for the mtDNA (20% by the first PC and 19% by the second PC). Populations included are: IRM, Marsh Arabs; IRQ, Iraqi; Alb, Albania; Alg-A, Algeria-Arabs; Alg-B, Algeria-Berbers; Aze, Azerbaijan; Ben, Benin; Bos, Bosnia; Bul, Bulgaria; Cau, Caucasus; Crt, Crete; Cro, Croatia; Cze, Czech Republic; Dru, Druze; Egy, Egypt; Egy-A, Egypt-Arabs; S-Egy, South Egypt; N-Egy, North Egypt; Eth-A, Ethiopia-Amhara; Eto-O, Ethiopia-Oromo; Geo, Georgia; Gre, Greece; Hun, Hungary; Ind, India; Ind-AA, India-Austro-Asiatics; Ind-D, India-Dravidians; Ind-IN, India-Indo-Europeans; Ind-TB, India-Tibeto-Burmans; N-Eur, North Europe (Austria, Germany, Ireland, North Italy, Poland, Scotland); N-Irn, North Iran; S-Irn, South Iran; IRN, Iran; NeI, North East Italy; C-Ita, Central Italy; S-Ita, South Italy; Sar, Sardinia; Jor, Jordan; Kur, Kurds; Leb-C, Lebanon-Christians; Leb-D, Lebanon-Druze; Leb-M, Lebanon-Muslims; Mar, Morocco; Ber, Morocco-Berbers; Oma, Oman; Pak, Pakistan; Pak-D, Pakistan-Dravidians; Pak-B, Pakistan-Burushaski; Pak-IE, Pakistan-Indo-Europeans; Pal, Palestinian; Pol, Poland; Qat, Qatar; Rwa-H, Rwanda-Hutu; Rwa-T, Rwanda-Tutsi; Sau, Saudi Arabia; Slv, Slovenia; Som, Somalia; Spa, Spain; Sud-A, Sudan-Arabs; Sud-N, Sudan-Niloti; Taj, Tajikistan; Tun, Tunisia; Tur, Turkey; Tuk, Turkmenistan; Ukr, Ukraine; Uae, United Arab Emirates; Yem, Yemen (Details in Additional files 3 and 4).
Figure 4
Figure 4
Networks of the STR haplotypes associated with haplogroups J1-M267* and J1-Page08, respectively. The eight STR (YCAIIa, YCAIIb, DYS19, DYS389I, DYS389II, DYS390, DYS391 and DYS392) haplotypes observed in 54 and 377 samples, respectively, are listed in Additional file 5. Circles and coloured sectors are proportional to the number of subjects, with the smallest circle and sector equal to 1. Connecting lines are proportional to the number of mutations.
Figure 5
Figure 5
Network of 233 mtDNA control-region haplotypes observed among 319 Iraqi samples. These haplotypes [Additional file 2] refer to the variation observed between np 16024 and np 200. Circles are proportional to the number of subjects, with the smallest circle equal to 1. Connecting lines are proportional to the number of mutations including haplogroup diagnostic markers. Haplogroups and sub-haplogroups are labelled according to Table 1.
Figure 6
Figure 6
Frequency (left panels) and variance (right panels) distributions of Y-chromosome haplogroups J1-M267, J1-M267* and J1-Page08. Maps are based on 102 digit points [Additional file 6]. Variance data are relative to the microsatellite loci DYS19, DYS389I, DYS389II, DYS390, DYS391 and DYS392 typed in all the reported samples. Frequency and variance details are reported in Additional files 6, 7 and 8.

Similar articles

See all similar articles

Cited by 19 articles

See all "Cited by" articles

References

    1. Encyclopædia Britannica Online. Encyclopædia Britannica. 2011. http://www.britannica.com/
    1. Maltby E. An Environmental and Ecological Study of the Marshlands of Mesopotamia. Draft Consultative Bulletin. Wetland Ecosystem Research Group, University of Exter: AMAR Appeal Trust, London; 1994.
    1. Evans MI. In: The Iraqi Marshlands: A human and environmental study. Nicholson E, Clark P, editor. London: Politico's; 2002. The ecosystem; pp. 201–219.
    1. Richardson CJ, Reiss P, Hussain NA, Alwash AJ, Pool DJ. The restoration potential of the Mesopotamian marshes of Iraq. Science. 2005;307:1307–1311. doi: 10.1126/science.1105750. - DOI - PubMed
    1. Soltysiak A. Physical anthropology and the "Sumerian problem". Studies in Historical Anthropology. 2006. pp. 4145–158.

Publication types

Substances

LinkOut - more resources

Feedback