Sexual conflict in viscous populations: the effect of the timing of dispersal

Theor Popul Biol. 2011 Dec;80(4):298-316. doi: 10.1016/j.tpb.2011.09.002. Epub 2011 Sep 22.


In recent years, there has been increasing theoretical and empirical examination of how sexual conflict can arise between males and females. However, much this work has implicitly assumed that interactions take place in panmictic populations with complete dispersal, where interactions are between unrelated individuals. Here, we examine the consequences of limited dispersal and population structure for the evolution of a male phenotype that is associated with the males pre- and post-copulatory reproductive success, using an inclusive-fitness based analysis applied to group-structured populations. We show that: (i) the sex-specific timing of the dispersal phase of the life cycle can drive the evolution of sexual conflict; (ii) the inclusive fitness of a female in this conflict is determined solely by direct (i.e. personal) effects on its own competitive ability. Our analysis is supported by results from individual-based simulations of multi-level selection. Our results support the suggestion that kin selection can influence the evolution of sexual conflict, but reveal that such a role might be more complex than previously appreciated when sex-specific life histories are taken into consideration. We discuss the implications of our results for sexual conflict in various species of insects, but focus primarily on dipteran flies of the family Sepsidae.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Competitive Behavior* / physiology
  • Female
  • Male
  • Population Dynamics
  • Selection, Genetic*
  • Sex Factors
  • Sexual Behavior, Animal*
  • Time Factors