Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
- PMID: 21985671
- DOI: 10.1146/annurev-cellbio-092910-154237
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
Abstract
Warburg's observation that cancer cells exhibit a high rate of glycolysis even in the presence of oxygen (aerobic glycolysis) sparked debate over the role of glycolysis in normal and cancer cells. Although it has been established that defects in mitochondrial respiration are not the cause of cancer or aerobic glycolysis, the advantages of enhanced glycolysis in cancer remain controversial. Many cells ranging from microbes to lymphocytes use aerobic glycolysis during rapid proliferation, which suggests it may play a fundamental role in supporting cell growth. Here, we review how glycolysis contributes to the metabolic processes of dividing cells. We provide a detailed accounting of the biosynthetic requirements to construct a new cell and illustrate the importance of glycolysis in providing carbons to generate biomass. We argue that the major function of aerobic glycolysis is to maintain high levels of glycolytic intermediates to support anabolic reactions in cells, thus providing an explanation for why increased glucose metabolism is selected for in proliferating cells throughout nature.
Similar articles
-
Mitochondria in cancer: not just innocent bystanders.Semin Cancer Biol. 2009 Feb;19(1):4-11. doi: 10.1016/j.semcancer.2008.11.008. Epub 2008 Dec 3. Semin Cancer Biol. 2009. PMID: 19101633 Review.
-
Glucose avidity of carcinomas.Cancer Lett. 2009 Apr 18;276(2):125-35. doi: 10.1016/j.canlet.2008.08.007. Epub 2008 Sep 14. Cancer Lett. 2009. PMID: 18790562 Review.
-
Ifosfamide metabolite chloroacetaldehyde inhibits cell proliferation and glucose metabolism without decreasing cellular ATP content in human breast cancer cells MCF-7.J Appl Toxicol. 2010 Apr;30(3):204-11. doi: 10.1002/jat.1485. J Appl Toxicol. 2010. PMID: 19774546
-
Mitochondria, hexokinase and pyruvate kinase isozymes in the aerobic glycolysis of tumor cells.Ital J Biochem. 1997 Sep;46(3):131-41. Ital J Biochem. 1997. PMID: 9442422
-
Oxidative metabolism in cancer growth.Curr Opin Clin Nutr Metab Care. 2006 Jul;9(4):339-45. doi: 10.1097/01.mco.0000232892.43921.98. Curr Opin Clin Nutr Metab Care. 2006. PMID: 16778561 Review.
Cited by
-
Noninvasive metabolic imaging of engineered 3D human adipose tissue in a perfusion bioreactor.PLoS One. 2013;8(2):e55696. doi: 10.1371/journal.pone.0055696. Epub 2013 Feb 6. PLoS One. 2013. PMID: 23405199 Free PMC article.
-
Signal integration by mTORC1 coordinates nutrient input with biosynthetic output.Nat Cell Biol. 2013 Jun;15(6):555-64. doi: 10.1038/ncb2763. Nat Cell Biol. 2013. PMID: 23728461 Free PMC article. Review.
-
Metabolic changes during ovarian cancer progression as targets for sphingosine treatment.Exp Cell Res. 2013 Jun 10;319(10):1431-42. doi: 10.1016/j.yexcr.2013.02.017. Epub 2013 Mar 19. Exp Cell Res. 2013. PMID: 23518387 Free PMC article.
-
A happy cell stays home: When metabolic stress creates epigenetic advantages in the tumor microenvironment.Front Oncol. 2022 Aug 26;12:962928. doi: 10.3389/fonc.2022.962928. eCollection 2022. Front Oncol. 2022. PMID: 36091163 Free PMC article. Review.
-
Pancreatic cancer tumor organoids exhibit subtype-specific differences in metabolic profiles.Cancer Metab. 2024 Oct 3;12(1):28. doi: 10.1186/s40170-024-00357-z. Cancer Metab. 2024. PMID: 39363341 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
