My starting point: the discovery of an NMR method for measuring blood oxygenation using the transverse relaxation time of blood water

Neuroimage. 2012 Aug 15;62(2):589-93. doi: 10.1016/j.neuroimage.2011.09.070. Epub 2011 Oct 6.

Abstract

This invited personal story, covering the period from 1979 to 2010, describes the discovery of the dependence of the transverse relaxation time of water in blood on the oxygenation state of hemoglobin in the erythrocytes. The underlying mechanism of the compartmentation of the different magnetic susceptibilities of hemoglobin in its different oxygenation states also explains the mechanism that underlies blood oxygenation level dependent contrast used in fMRI. The story begins with the initial observation of line broadening during ischemia in small rodents detected by in vivo 31P NMR spectroscopy at high field. This spectroscopic line broadening or T2* relaxation effect was demonstrated to be related to the oxygenation state of blood. The effect was quantified more accurately using T2 values measured by the Carr-Purcell-Meiboom-Gill method. The effect was dependent on the integrity of the erythrocytes to compartmentalize the different magnetic susceptibilities produced by the changing spin state of the ferrous iron of hemoglobin in its different oxygenation states between the erythrocytes and the suspending solution. The hematocrit and magnetic field dependence, the requirement for erythrocyte integrity and lack of T1 dependence confirmed that the magnetic susceptibility effect explained the oxygenation state dependence of T2* and T2. This T2/T2* effect was combined with T1 based measurements of blood flow to measure oxygen consumption in animals. This blood oxygenation assay and its underlying magnetic susceptibility gradient mechanism was published in the biochemistry literature in 1982 and largely forgotten. The observation was revived to explain evolving imaging features of cerebral hematoma as MR imaging of humans increased in field strength to 1.5 T by the mid 1980s. Although the imaging version of this assay was used to measure a global metabolic rate of cerebral oxygen consumption in humans at 1.5-T by 1991, the global measurement had little clinical value. By contrast, a decade after the spectroscopic observation, imaging experiments performed on rodents at 7 T by Ogawa and colleagues identified the extravascular T2* imaging characteristics of the blood oxygenation effect and, most importantly, associated that change with brain functional states. Ogawa appropriately branded this blood oxygenation level dependent mechanism as BOLD contrast. This mechanism was subsequently shown to be the basis of localized MR signal changes associated with local brain function. This connection led to the fMRI revolution in human brain mapping.

Publication types

  • Historical Article
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Brain Mapping / history
  • Brain Mapping / methods
  • Brain*
  • Hemoglobins / chemistry
  • Hemoglobins / metabolism
  • History, 20th Century
  • History, 21st Century
  • Humans
  • Magnetic Resonance Imaging / history*
  • Magnetic Resonance Spectroscopy / history*
  • Magnetic Resonance Spectroscopy / methods
  • Oxygen / blood*

Substances

  • Hemoglobins
  • Oxygen