Altered expression of GADD45 genes during the development of chemical-mediated liver hypertrophy and liver tumor promotion in rats

J Toxicol Sci. 2011 Oct;36(5):613-23. doi: 10.2131/jts.36.613.

Abstract

The purpose of our study was to examine the altered gene expression associated with nongenotoxic chemical-mediated liver hypertrophy and successive liver tumor promotion. Five-week-old male rats were fed a basal diet or a diet containing phenobarbital (PB) or clofibrate (CF) for 3 days, 4 weeks, and 13 weeks. Hepatic expression profiling of cell growth- and stress-related genes, as well as those involved in xenobiotic metabolism, was performed by DNA microarray and/or real time quantitative reverse transcription-polymerase chain reaction. The induction of liver hypertrophy and hepatic cytochrome P450 (CYP) isoforms (CYP2B1/2B2 for PB and CYP4A1 for CF) by PB and CF were clearly observed at all the treatment periods examined. Genes encoding DNA damage-inducible 45 (GADD45) family proteins, in particular GADD45g (GADD45 gamma) were down-regulated by treatment with either PB or CF for 4 and 13 weeks. The chemical-mediated development of liver hypertrophy, induction of hepatic CYPs, and suppression of hepatic GADD45g gene at week 13 disappeared at 4 weeks following cessation of the chemical treatment. Additionally, DNA microarray data indicated that cell cycle-related genes such as cyclins CCNB1 and CCNA2 and cyclin-dependent kinase inhibitor CDKN3 were also down-regulated by treatment with either PB or CF at 13 weeks. Since GADD45 functions as a chemical and radiation stress sensor by interacting with cyclins and cyclin-dependent kinase inhibitors, the decrease in the gene expression of GADD45g mRNA observed in this study, may be associated with nongenotoxic chemical-induced tumor promotion of hepatocarcinogenesis rather than liver hypertrophy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Cycle Proteins / genetics*
  • Clofibrate / toxicity
  • Cytochrome P-450 Enzyme System / biosynthesis
  • DNA Damage* / genetics
  • Down-Regulation
  • Enzyme Induction
  • Gene Expression / drug effects*
  • Gene Expression Profiling
  • Hepatomegaly / chemically induced*
  • Hepatomegaly / genetics
  • Hepatomegaly / pathology
  • Isoenzymes
  • Liver / drug effects*
  • Liver / enzymology
  • Liver / metabolism
  • Liver / pathology
  • Liver Neoplasms, Experimental / chemically induced*
  • Liver Neoplasms, Experimental / genetics
  • Liver Neoplasms, Experimental / pathology
  • Male
  • Nuclear Proteins / genetics*
  • Oligonucleotide Array Sequence Analysis
  • Phenobarbital / toxicity
  • Rats
  • Rats, Inbred F344
  • Real-Time Polymerase Chain Reaction
  • Time Factors
  • Xenobiotics / toxicity

Substances

  • Cell Cycle Proteins
  • Gadd45a protein, rat
  • Isoenzymes
  • Nuclear Proteins
  • Xenobiotics
  • Cytochrome P-450 Enzyme System
  • Clofibrate
  • Phenobarbital