Stopping a response has global or nonglobal effects on the motor system depending on preparation

J Neurophysiol. 2012 Jan;107(1):384-92. doi: 10.1152/jn.00704.2011. Epub 2011 Oct 19.


Much research has focused on how people stop initiated response tendencies when instructed by a signal. Stopping of this kind appears to have global effects on the motor system. For example, by delivering transcranial magnetic stimulation (TMS) over the leg area of the primary motor cortex, it is possible to detect suppression in the leg when the hand is being stopped (Badry R et al. Suppression of human cortico-motoneuronal excitability during the stop-signal task. Clin Neurophysiol 120: 1717-1723, 2009). Here, we asked if such "global suppression" can be observed proactively, i.e., when people anticipate they might have to stop. We used a conditional stop signal task, which allows the measurement of both an "anticipation phase" (i.e., where proactive control is applied) and a "stopping" phase. TMS was delivered during the anticipation phase (experiment 1) and also during the stopping phase (experiments 1 and 2) to measure leg excitability. During the anticipation phase, we did not observe leg suppression, but we did during the stopping phase, consistent with Badry et al. (2009). Moreover, when we split the subject groups into those who slowed down behaviorally (i.e., exercised proactive control) and those who did not, we found that subjects who slowed did not show leg suppression when they stopped, whereas those who did not slow did show leg suppression when they stopped. These results suggest that if subjects prepare to stop, then they do so without global effects on the motor system. Thus, preparation allows them to stop more selectively.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Attention / physiology*
  • Cues
  • Female
  • Humans
  • Inhibition, Psychological*
  • Leg
  • Male
  • Motor Cortex / physiology*
  • Movement / physiology*
  • Muscle Contraction / physiology*
  • Muscle, Skeletal / innervation
  • Muscle, Skeletal / physiology*
  • Neural Inhibition / physiology*
  • Task Performance and Analysis