A disposable tear glucose biosensor--part 3: assessment of enzymatic specificity

J Diabetes Sci Technol. 2011 Sep 1;5(5):1108-15. doi: 10.1177/193229681100500511.

Abstract

Background: A concept for a tear glucose sensor based on amperometric measurement of enzymatic oxidation of glucose was previously presented, using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD) as the enzyme. Glucose dehydrogenase flavin adenine dinucleotide is further characterized in this article and evaluated for suitability in glucose-sensing applications in purified tear-like saline, with specific attention to the effect of interfering substances only. These interferents are specifically saccharides that could interact with the enzymatic activity seen in the sensor's performance.

Methods: Bench top amperometric glucose assays were performed using an assay solution of GDH-FAD and ferricyanide redox mediator with samples of glucose, mannose, lactose, maltose, galactose, fructose, sucrose, and xylose at varying concentrations to evaluate specificity, linear dynamic range, signal size, and signal-to-noise ratio. A comparison study was done by substituting an equivalent activity unit concentration of glucose oxidase (GOx) for GDH-FAD.

Results: Glucose dehydrogenase flavin adenine dinucleotide was found to be more sensitive than GOx, producing larger oxidation currents than GOx on an identical glucose concentration gradient, and GDH-FAD exhibited larger slope response (-5.65 × 10(-7) versus -3.11 × 10(-7) A/mM), signal-to-noise ratio (18.04 versus 2.62), and linear dynamic range (0-30 versus 0-10 mM), and lower background signal (-7.12 versus -261.63 nA) than GOx under the same assay conditions. GDH-FAD responds equally to glucose and xylose but is otherwise specific for glucose.

Conclusion: Glucose dehydrogenase flavin adenine dinucleotide compares favorably with GOx in many sensor-relevant attributes and may enable measurement of glucose concentrations both higher and lower than those measurable by GOx. GDH-FAD is a viable enzyme to use in the proposed amperometric tear glucose sensor system and perhaps also in detecting extreme hypoglycemia or hyperglycemia in blood.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques*
  • Electrochemistry
  • Glucose / analysis*
  • Glucose 1-Dehydrogenase / analysis*
  • Glucose Oxidase / analysis*
  • Oxidation-Reduction
  • Sensitivity and Specificity
  • Signal-To-Noise Ratio

Substances

  • Glucose 1-Dehydrogenase
  • Glucose Oxidase
  • Glucose