Chaotrope vs. kosmotrope: which one has lower friction?

J Chem Phys. 2011 Oct 21;135(15):154702. doi: 10.1063/1.3646949.

Abstract

We examine the frictional properties of zwitterionic surfaces and explore whether chaotropic or kosmotropic charged groups are preferred to achieve lower friction. Self-assembled monolayers of carboxybetaine (CB-SAMs) and sulfurbetaine (SB-SAMs) are used as model surfaces as they contain the same positively charged group, but different negatively charged ones. The negatively charged groups are kosmotropic carboxylates in the CB-SAM surfaces and chaotropic sulfonate groups in the SB-SAM surfaces, respectively. The results show that the friction of the SB-SAM surfaces is even lower than that of the CB-SAM surfaces although both surfaces have low friction. This suggests that chaotropic charged groups are better in reducing friction than kosmotropic groups. The lower friction of the SB-SAM surfaces over the CB-SAM can be explained by the higher mobility of water near the SB-SAM surfaces, as shown in the survival autocorrelation function and the dipole autocorrelation function of hydration water molecules.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Betaine / chemistry*
  • Friction
  • Ions / chemistry
  • Surface Properties
  • Water / chemistry

Substances

  • Ions
  • Water
  • Betaine