Surface tunability of nanoparticles in modulating platelet functions

Blood Cells Mol Dis. 2012 Jan 15;48(1):36-44. doi: 10.1016/j.bcmd.2011.09.011. Epub 2011 Oct 26.


Metallic nanoparticles are attractive candidates as MRI contrast agents and mediators for drug delivery, diagnostics, and therapy. Direct contact and exposure to blood circulation is common in many such applications. The consequent thrombotic response may therefore be important to study. The main objective of the present work was to study how platelet functions were changed in the presence of different nano-surface or surface capping, which may provide a measure for the safety of a nanoparticle, and also assess the use of such nanoparticles in platelet modulation. Aggregometry, ATP release reaction, flow cytometry and immune-blotting studies were performed to study platelet response to different nano-particles (iron oxide, gold and silver). For each nanoparticle surface conjugation (capping) was varied. It was found that citric acid functionalized iron oxide nanoparticles have anti-platelet activity, with a decrease in aggregation, tyrosine phosphorylation level, and granule release. On the other hand in other cases (e.g. gold nanoparticles) pro-aggregatory response was observed in the presence of nanoparticles and, in some cases, the nanoparticles behaved neutrally (e.g. for starch-coated iron oxide nanoparticles). Therefore, nanoparticles can induce antiplatelet or a pro-aggregatory response, or remain neutral depending on surface capping. A related observation is that antiplatelet drugs can be made more potent by nanoparticle conjugation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / analysis
  • Aspirin / metabolism
  • Aspirin / pharmacology
  • Blood Platelets / drug effects*
  • Blood Platelets / metabolism
  • Blotting, Western
  • Citric Acid / chemistry
  • Citric Acid / metabolism
  • Coated Materials, Biocompatible / chemical synthesis*
  • Coated Materials, Biocompatible / metabolism
  • Coated Materials, Biocompatible / pharmacology
  • Ferric Compounds / chemistry
  • Ferric Compounds / pharmacology
  • Flow Cytometry
  • Gold / chemistry
  • Gold / pharmacology
  • Humans
  • Metal Nanoparticles / chemistry*
  • Metal Nanoparticles / ultrastructure
  • Microscopy, Atomic Force
  • Nanotechnology / methods*
  • Platelet Activation / drug effects
  • Platelet Aggregation / drug effects
  • Platelet Aggregation Inhibitors / chemistry
  • Platelet Aggregation Inhibitors / pharmacology
  • Silver / chemistry
  • Silver / pharmacology
  • Starch / chemistry
  • Starch / metabolism
  • Surface Properties


  • Coated Materials, Biocompatible
  • Ferric Compounds
  • Platelet Aggregation Inhibitors
  • ferric oxide
  • Citric Acid
  • Silver
  • Gold
  • Adenosine Triphosphate
  • Starch
  • Aspirin