Gap junctions synchronize action potentials and Ca2+ transients in Caenorhabditis elegans body wall muscle
- PMID: 22033926
- PMCID: PMC3243499
- DOI: 10.1074/jbc.M111.292078
Gap junctions synchronize action potentials and Ca2+ transients in Caenorhabditis elegans body wall muscle
Abstract
The sinusoidal locomotion of Caenorhabditis elegans requires synchronous activities of neighboring body wall muscle cells. However, it is unknown whether the synchrony results from muscle electrical coupling or neural inputs. We analyzed the effects of mutating gap junction proteins and blocking neuromuscular transmission on the synchrony of action potentials (APs) and Ca2+ transients among neighboring body wall muscle cells. In wild-type worms, the percentage of synchronous APs between two neighboring cells varied depending on the anatomical relationship and junctional conductance (Gj) between them, and Ca2+ transients were synchronous among neighboring muscle cells. Compared with the wild type, knock-out of the gap junction gene unc-9 resulted in greatly reduced coupling coefficient and asynchronous APs and Ca2+ transients. Inhibition of unc-9 expression specifically in muscle by RNAi also reduced the synchrony of APs and Ca2+ transients, whereas expression of wild-type UNC-9 specifically in muscle rescued the synchrony defect. Loss of the stomatin-like protein UNC-1, which is a regulator of UNC-9-based gap junctions, similarly impaired muscle synchrony as unc-9 mutant did. The blockade of muscle ionotropic acetylcholine receptors by (+)-tubocurarine decreased the frequencies of APs and Ca2+ transients, whereas blockade of muscle GABAA receptors by gabazine had opposite effects. However, both APs and Ca2+ transients remained synchronous after the application of (+)-tubocurarine and/or gabazine. These observations suggest that gap junctions in C. elegans body wall muscle cells are responsible for synchronizing muscle APs and Ca2+ transients.
Figures
Similar articles
-
Six innexins contribute to electrical coupling of C. elegans body-wall muscle.PLoS One. 2013 Oct 9;8(10):e76877. doi: 10.1371/journal.pone.0076877. eCollection 2013. PLoS One. 2013. PMID: 24130800 Free PMC article.
-
Low conductance gap junctions mediate specific electrical coupling in body-wall muscle cells of Caenorhabditis elegans.J Biol Chem. 2006 Mar 24;281(12):7881-9. doi: 10.1074/jbc.M512382200. Epub 2006 Jan 24. J Biol Chem. 2006. PMID: 16434400
-
UNC-1 regulates gap junctions important to locomotion in C. elegans.Curr Biol. 2007 Aug 7;17(15):1334-9. doi: 10.1016/j.cub.2007.06.060. Epub 2007 Jul 19. Curr Biol. 2007. PMID: 17658257 Free PMC article.
-
Genetic dissection of ion currents underlying all-or-none action potentials in C. elegans body-wall muscle cells.J Physiol. 2011 Jan 1;589(Pt 1):101-17. doi: 10.1113/jphysiol.2010.200683. Epub 2010 Nov 8. J Physiol. 2011. PMID: 21059759 Free PMC article.
-
Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans.Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):E1263-E1272. doi: 10.1073/pnas.1621274114. Epub 2017 Jan 31. Proc Natl Acad Sci U S A. 2017. PMID: 28143932 Free PMC article.
Cited by
-
Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand?Bioscience. 2014 Jun 1;64(6):476-486. doi: 10.1093/biosci/biu058. Epub 2014 May 6. Bioscience. 2014. PMID: 26955070 Free PMC article.
-
Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics.Philos Trans R Soc Lond B Biol Sci. 2015 Sep 19;370(1677):20140212. doi: 10.1098/rstb.2014.0212. Philos Trans R Soc Lond B Biol Sci. 2015. PMID: 26240427 Free PMC article. Review.
-
Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses.Nat Commun. 2017 Mar 20;8:14818. doi: 10.1038/ncomms14818. Nat Commun. 2017. PMID: 28317880 Free PMC article.
-
Six innexins contribute to electrical coupling of C. elegans body-wall muscle.PLoS One. 2013 Oct 9;8(10):e76877. doi: 10.1371/journal.pone.0076877. eCollection 2013. PLoS One. 2013. PMID: 24130800 Free PMC article.
-
Organelle calcium-derived voltage oscillations in pacemaker neurons drive the motor program for food-seeking behavior in Aplysia.Elife. 2021 Jun 30;10:e68651. doi: 10.7554/eLife.68651. Elife. 2021. PMID: 34190043 Free PMC article.
References
-
- Goodman M. B. (2006) WormBook, The C. elegans Research Community, WormBook, doi/10.1895/wormbook. 1.62.1, http://www.wormbook.org - DOI - PubMed
-
- de Bono M., Maricq A. V. (2005) Annu. Rev. Neurosci. 28, 451–501 - PubMed
-
- Chalfie M., White J. (1988) in The Nematode Caenorhabditis elegans (Wood W. B., and the Community of C. elegans Researchers, eds.) pp. 337–391, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
-
- White J. G., Southgate E., Thomson J. N., Brenner S. (1976) Philos. Trans. R. Soc. Lond. B Biol. Sci. 275, 327–348 - PubMed
-
- Liu Q., Chen B., Hall D. H., Wang Z. W. (2007) Dev. Neurobiol. 67, 123–128 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
