A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance

Breast Cancer Res Treat. 2012 Apr;132(2):365-77. doi: 10.1007/s10549-011-1818-2. Epub 2011 Oct 22.


A risk prediction model is a statistical tool for estimating the probability that a currently healthy individual with specific risk factors will develop a condition in the future such as breast cancer. Reliably accurate prediction models can inform future disease burdens, health policies and individual decisions. Breast cancer prediction models containing modifiable risk factors, such as alcohol consumption, BMI or weight, condom use, exogenous hormone use and physical activity, are of particular interest to women who might be considering how to reduce their risk of breast cancer and clinicians developing health policies to reduce population incidence rates. We performed a systematic review to identify and evaluate the performance of prediction models for breast cancer that contain modifiable factors. A protocol was developed and a sensitive search in databases including MEDLINE and EMBASE was conducted in June 2010. Extensive use was made of reference lists. Included were any articles proposing or validating a breast cancer prediction model in a general female population, with no language restrictions. Duplicate data extraction and quality assessment were conducted. Results were summarised qualitatively, and where possible meta-analysis of model performance statistics was undertaken. The systematic review found 17 breast cancer models, each containing a different but often overlapping set of modifiable and other risk factors, combined with an estimated baseline risk that was also often different. Quality of reporting was generally poor, with characteristics of included participants and fitted model results often missing. Only four models received independent validation in external data, most notably the 'Gail 2' model with 12 validations. None of the models demonstrated consistently outstanding ability to accurately discriminate between those who did and those who did not develop breast cancer. For example, random-effects meta-analyses of the performance of the 'Gail 2' model showed the average C statistic was 0.63 (95% CI 0.59-0.67), and the expected/observed ratio of events varied considerably across studies (95% prediction interval for E/O ratio when the model was applied in practice was 0.75-1.19). There is a need for models with better predictive performance but, given the large amount of work already conducted, further improvement of existing models based on conventional risk factors is perhaps unlikely. Research to identify new risk factors with large additionally predictive ability is therefore needed, alongside clearer reporting and continual validation of new models as they develop.

Publication types

  • Meta-Analysis
  • Review
  • Systematic Review

MeSH terms

  • Breast Neoplasms / epidemiology*
  • Breast Neoplasms / prevention & control
  • Female
  • Humans
  • Incidence
  • Models, Statistical*
  • Probability
  • Prognosis
  • Reproducibility of Results
  • Risk Assessment
  • Risk Factors