Centromere repositioning in mammals
- PMID: 22045381
- PMCID: PMC3238114
- DOI: 10.1038/hdy.2011.101
Centromere repositioning in mammals
Abstract
The evolutionary history of chromosomes can be tracked by the comparative hybridization of large panels of bacterial artificial chromosome clones. This approach has disclosed an unprecedented phenomenon: 'centromere repositioning', that is, the movement of the centromere along the chromosome without marker order variation. The occurrence of evolutionary new centromeres (ENCs) is relatively frequent. In macaque, for instance, 9 out of 20 autosomal centromeres are evolutionarily new; in donkey at least 5 such neocentromeres originated after divergence from the zebra, in less than 1 million years. Recently, orangutan chromosome 9, considered to be heterozygous for a complex rearrangement, was discovered to be an ENC. In humans, in addition to neocentromeres that arise in acentric fragments and result in clinical phenotypes, 8 centromere-repositioning events have been reported. These 'real-time' repositioned centromere-seeding events provide clues to ENC birth and progression. In the present paper, we provide a review of the centromere repositioning. We add new data on the population genetics of the ENC of the orangutan, and describe for the first time an ENC on the X chromosome of squirrel monkeys. Next-generation sequencing technologies have started an unprecedented, flourishing period of rapid whole-genome sequencing. In this context, it is worth noting that these technologies, uncoupled from cytogenetics, would miss all the biological data on evolutionary centromere repositioning. Therefore, we can anticipate that classical and molecular cytogenetics will continue to have a crucial role in the identification of centromere movements. Indeed, all ENCs and human neocentromeres were found following classical and molecular cytogenetic investigations.
Figures
Similar articles
-
Evolutionary movement of centromeres in horse, donkey, and zebra.Genomics. 2006 Jun;87(6):777-82. doi: 10.1016/j.ygeno.2005.11.012. Epub 2006 Jan 18. Genomics. 2006. PMID: 16413164
-
Evolutionary new centromeres in primates.Prog Mol Subcell Biol. 2009;48:103-52. doi: 10.1007/978-3-642-00182-6_5. Prog Mol Subcell Biol. 2009. PMID: 19521814 Review.
-
Centromere repositioning explains fundamental number variability in the New World monkey genus Saimiri.Chromosoma. 2017 Aug;126(4):519-529. doi: 10.1007/s00412-016-0619-0. Epub 2016 Nov 10. Chromosoma. 2017. PMID: 27834006
-
Subchromosomal karyotype evolution in Equidae.Chromosome Res. 2013 Apr;21(2):175-87. doi: 10.1007/s10577-013-9346-z. Epub 2013 Mar 27. Chromosome Res. 2013. PMID: 23532666
-
Chromosomal dynamics of human neocentromere formation.Chromosome Res. 2004;12(6):617-26. doi: 10.1023/B:CHRO.0000036585.44138.4b. Chromosome Res. 2004. PMID: 15289667 Review.
Cited by
-
Epigenetics as an Evolutionary Tool for Centromere Flexibility.Genes (Basel). 2020 Jul 16;11(7):809. doi: 10.3390/genes11070809. Genes (Basel). 2020. PMID: 32708654 Free PMC article. Review.
-
Molecular cytogenetics: karyotype evolution, phylogenomics and future prospects.Heredity (Edinb). 2012 Jan;108(1):1-3. doi: 10.1038/hdy.2011.117. Heredity (Edinb). 2012. PMID: 22167088 Free PMC article. No abstract available.
-
Chromosomal organization of multigene families and meiotic analysis in species of Loricariidae (Siluriformes) from Brazilian Amazon, with description of a new cytotype for genus Spatuloricaria.Biol Open. 2023 Nov 15;12(11):bio060029. doi: 10.1242/bio.060029. Epub 2023 Nov 9. Biol Open. 2023. PMID: 37819723 Free PMC article.
-
The unique kind of human artificial chromosome: Bypassing the requirement for repetitive centromere DNA.Exp Cell Res. 2020 Jun 15;391(2):111978. doi: 10.1016/j.yexcr.2020.111978. Epub 2020 Apr 1. Exp Cell Res. 2020. PMID: 32246994 Free PMC article. Review.
-
Genetic diversity analysis in the Brazilian Amazon reveals a new evolutionary lineage and new karyotype for the genus Mesomys (Rodentia, Echimyidae, Eumysopinae).PLoS One. 2023 Oct 4;18(10):e0291797. doi: 10.1371/journal.pone.0291797. eCollection 2023. PLoS One. 2023. PMID: 37792706 Free PMC article.
References
-
- Alonso A, Mahmood R, Li S, Cheung F, Yoda K, Warburton PE. Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum Mol Genet. 2003;12:2711–2721. - PubMed
-
- Ayres J. On a new species of squirrel monkey, genus Saimiri, from Brazilian Amazonia (Primates, Cebidae) Papéis Avulsos Zool São Paulo. 1985;36:147–164.
-
- Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, et al. Recent segmental duplications in the human genome. Science. 2002;297:1003–1007. - PubMed
-
- Bhasim MK. Human population cytogenetics: a review. Anthropologist. 2007;3 (Special Volume:435–506.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
