Lymphocyte polarity, the immunological synapse and the scope of biological analogy

Bioarchitecture. 2011 Jul;1(4):180-185. doi: 10.4161/bioa.1.4.17594. Epub 2011 Jul 1.

Abstract

Lymphocytes such as T cells, B cells and natural killer (NK) cells form specialized contacts, called immunological synapses, with other cells in order to engage in specific intercellular communication and killing. Synapse formation is associated with the polarization of the microtubule-organizing center (MTOC) toward the contact site, which enables the directional secretion of cytokines and lytic factors. Although MTOC reorientation to the synapse is crucial for lymphocyte function, it has been difficult to study because of technical constraints. We have developed a photoactivation and imaging strategy that enables high-resolution analysis of cytoskeletal dynamics in individual T cells. Using this approach, we have demonstrated that the lipid second messenger diacylglycerol plays a crucial role in promoting MTOC reorientation by recruiting three members of the protein kinase C family to the synapse. Here, I will discuss these results along with studies from other labs, which have explored the role of polarity-inducing protein complexes after synapse formation. I will also propose a two-step model for MTOC reorientation in lymphocytes that reflects what we now know about the subject. Finally, I will consider the extent to which lymphocyte polarity resembles analogous cell polarity systems in other cell types.