Profiling of substrate specificities of 3C-like proteases from group 1, 2a, 2b, and 3 coronaviruses

PLoS One. 2011;6(11):e27228. doi: 10.1371/journal.pone.0027228. Epub 2011 Nov 2.


Background: Coronaviruses (CoVs) can be classified into alphacoronavirus (group 1), betacoronavirus (group 2), and gammacoronavirus (group 3) based on diversity of the protein sequences. Their 3C-like protease (3CL(pro)), which catalyzes the proteolytic processing of the polyproteins for viral replication, is a potential target for anti-coronaviral infection.

Methodology/principal findings: Here, we profiled the substrate specificities of 3CL(pro) from human CoV NL63 (group 1), human CoV OC43 (group 2a), severe acute respiratory syndrome coronavirus (SARS-CoV) (group 2b) and infectious bronchitis virus (IBV) (group 3), by measuring their activity against a substrate library of 19 × 8 of variants with single substitutions at P5 to P3' positions. The results were correlated with structural properties like side chain volume, hydrophobicity, and secondary structure propensities of substituting residues. All 3CL(pro) prefer Gln at P1 position, Leu at P2 position, basic residues at P3 position, small hydrophobic residues at P4 position, and small residues at P1' and P2' positions. Despite 3CL(pro) from different groups of CoVs share many similarities in substrate specificities, differences in substrate specificities were observed at P4 positions, with IBV 3CL(pro) prefers P4-Pro and SARS-CoV 3CL(pro) prefers P4-Val. By combining the most favorable residues at P3 to P5 positions, we identified super-active substrate sequences 'VARLQ↓SGF' that can be cleaved efficiently by all 3CL(pro) with relative activity of 1.7 to 3.2, and 'VPRLQ↓SGF' that can be cleaved specifically by IBV 3CL(pro) with relative activity of 4.3.

Conclusions/significance: The comprehensive substrate specificities of 3CL(pro) from each of the group 1, 2a, 2b, and 3 CoVs have been profiled in this study, which may provide insights into a rational design of broad-spectrum peptidomimetic inhibitors targeting the proteases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cloning, Molecular
  • Coronavirus / classification
  • Coronavirus / enzymology*
  • Models, Molecular
  • Molecular Sequence Data
  • Peptide Hydrolases / genetics
  • Peptide Hydrolases / metabolism*
  • Substrate Specificity


  • Peptide Hydrolases

Associated data

  • GENBANK/AAX85666
  • GENBANK/AY567487
  • GENBANK/M95169