Normalization as a canonical neural computation
- PMID: 22108672
- PMCID: PMC3273486
- DOI: 10.1038/nrn3136
Normalization as a canonical neural computation
Erratum in
- Nat Rev Neurosci. 2013 Feb;14(2):152
Abstract
There is increasing evidence that the brain relies on a set of canonical neural computations, repeating them across brain regions and modalities to apply similar operations to different problems. A promising candidate for such a computation is normalization, in which the responses of neurons are divided by a common factor that typically includes the summed activity of a pool of neurons. Normalization was developed to explain responses in the primary visual cortex and is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions. Normalization may underlie operations such as the representation of odours, the modulatory effects of visual attention, the encoding of value and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that it serves as a canonical neural computation.
Figures
Similar articles
-
Divisive Normalization Predicts Adaptation-Induced Response Changes in Macaque Inferior Temporal Cortex.J Neurosci. 2016 Jun 1;36(22):6116-28. doi: 10.1523/JNEUROSCI.2011-15.2016. J Neurosci. 2016. PMID: 27251630 Free PMC article.
-
Divisive normalization unifies disparate response signatures throughout the human visual hierarchy.Proc Natl Acad Sci U S A. 2021 Nov 16;118(46):e2108713118. doi: 10.1073/pnas.2108713118. Proc Natl Acad Sci U S A. 2021. PMID: 34772812 Free PMC article.
-
Optogenetic Activation of Normalization in Alert Macaque Visual Cortex.Neuron. 2015 Jun 17;86(6):1504-17. doi: 10.1016/j.neuron.2015.05.040. Neuron. 2015. PMID: 26087167 Free PMC article.
-
Neural circuit models for computations in early visual cortex.Curr Opin Neurobiol. 2011 Oct;21(5):808-15. doi: 10.1016/j.conb.2011.07.005. Epub 2011 Aug 26. Curr Opin Neurobiol. 2011. PMID: 21873046 Review.
-
A comparison of experience-dependent plasticity in the visual and somatosensory systems.Neuron. 2005 Nov 3;48(3):465-77. doi: 10.1016/j.neuron.2005.10.013. Neuron. 2005. PMID: 16269363 Review.
Cited by
-
Tuned inhibition in perceptual decision-making circuits can explain seemingly suboptimal confidence behavior.PLoS Comput Biol. 2021 Mar 29;17(3):e1008779. doi: 10.1371/journal.pcbi.1008779. eCollection 2021 Mar. PLoS Comput Biol. 2021. PMID: 33780449 Free PMC article.
-
Mechanisms of neuronal computation in mammalian visual cortex.Neuron. 2012 Jul 26;75(2):194-208. doi: 10.1016/j.neuron.2012.06.011. Neuron. 2012. PMID: 22841306 Free PMC article. Review.
-
A neural basis for the spatial suppression of visual motion perception.Elife. 2016 May 26;5:e16167. doi: 10.7554/eLife.16167. Elife. 2016. PMID: 27228283 Free PMC article.
-
Contrast-Dependence of Temporal Frequency Tuning in Mouse V1.Front Neurosci. 2020 Aug 25;14:868. doi: 10.3389/fnins.2020.00868. eCollection 2020. Front Neurosci. 2020. PMID: 32982668 Free PMC article.
-
Orthogonality of sensory and contextual categorical dynamics embedded in a continuum of responses from the second somatosensory cortex.Proc Natl Acad Sci U S A. 2024 Jul 16;121(29):e2316765121. doi: 10.1073/pnas.2316765121. Epub 2024 Jul 11. Proc Natl Acad Sci U S A. 2024. PMID: 38990946 Free PMC article.
References
-
- Douglas RJ, Koch C, Mahowald M, Martin KAC, Suarez HH. Recurrent excitation in neocortical circuits. Science. 1995;269:981–985. - PubMed
-
- Wang XJ. Probabilistic decision making by slow reverberation in cortical circuits. Neuron. 2002;36:955–968. - PubMed
-
- Hanes DP, Schall JD. Neural control of voluntary movement initiation. Science. 1996;274:427–430. - PubMed
-
- Lo CC, Wang XJ. Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nature Neurosci. 2006;9:956–963. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
