Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes

Int J Nanomedicine. 2011:6:2641-52. doi: 10.2147/IJN.S24167. Epub 2011 Oct 31.

Abstract

Background: Single-walled carbon nanotubes (SWNT) are poorly soluble in water, so their applications are limited. Therefore, aqueous solutions of SWNT, designed by noncovalent functionalization and without toxicity, are required for biomedical applications.

Methods: In this study, we conjugated docetaxel with SWNT via π-π accumulation and used a surfactant to functionalize SWNT noncovalently. The SWNT were then conjugated with docetaxel (DTX-SWNT) and linked with NGR (Asn-Gly-Arg) peptide, which targets tumor angiogenesis, to obtain a water-soluble and tumor-targeting SWNT-NGR-DTX drug delivery system.

Results: SWNT-NGR-DTX showed higher efficacy than docetaxel in suppressing tumor growth in a cultured PC3 cell line in vitro and in a murine S180 cancer model. Tumor volumes in the S180 mouse model decreased considerably under near-infrared radiation compared with the control group.

Conclusion: The SWNT-NGR-DTX drug delivery system may be promising for high treatment efficacy with minimal side effects in future cancer therapy.

Keywords: NGR peptide; docetaxel; near-infrared radiation; single-walled carbon nanotubes; tumor-targeting.

MeSH terms

  • Ablation Techniques / methods*
  • Animals
  • Antineoplastic Agents / pharmacokinetics
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Combined Modality Therapy
  • Docetaxel
  • Drug Carriers / chemistry
  • Drug Carriers / pharmacokinetics
  • Drug Carriers / pharmacology*
  • Female
  • Humans
  • Laser Therapy / methods
  • Mice
  • Mice, Inbred BALB C
  • Microscopy, Fluorescence
  • Nanotubes, Carbon / chemistry*
  • Neoplasms, Experimental / drug therapy
  • Neoplasms, Experimental / pathology
  • Neoplasms, Experimental / surgery
  • Neoplasms, Experimental / therapy*
  • Oligopeptides / chemistry
  • Surface-Active Agents / chemistry
  • Taxoids / pharmacokinetics
  • Taxoids / pharmacology*
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • Drug Carriers
  • NGR peptide
  • Nanotubes, Carbon
  • Oligopeptides
  • Surface-Active Agents
  • Taxoids
  • Docetaxel